The singular value decomposition (SVD) of a reordering of a matrix A can be used to determine an efficient Kronecker product (KP) sum approximation to A. We present the use of an approximate truncated SVD (TSVD) to find the KP approximation, and contrast using a randomized singular value decomposition algorithm (RSVD), a new enlarged Golub Kahan Bidiagonalization algorithm (EGKB) and the exact TSVD. The EGKB algorithm enlarges the Krylov subspace beyond a given rank for the desired approximation. A suitable rank is determined using an automatic stopping test. We also contrast the use of single and double precision arithmetic to find the approximate TSVDs. To illustrate the accuracy and efficiency in terms of memory and computational cost of these approximate KPs, we consider the solution of the total variation regularized image deblurring problem using the split Bregman algorithm implemented in double precision. Together with an efficient implementation for the reordering of A we demonstrate that the approximate KP sum can be obtained using a TSVD, and that the new EGKB algorithm contrasts favorably with the use of the RSVD. These results verify that it is feasible to use single precision when estimating a KP sum from an approximate TSVD.
more »
« less
Zap Q-Learning - A User's Guide
The authors develop a theory characterizing optimal stopping times for discrete-time ergodic Markov processes with discounted rewards. The theory differs from prior work by its view of per-stage and terminal reward functions as elements of a certain Hilbert space. In addition to a streamlined analysis establishing existence and uniqueness of a solution to Bellman's equation, this approach provides an elegant framework for the study of approximate solutions. In particular, the authors propose a stochastic approximation algorithm that tunes weights of a linear combination of basis functions in order to approximate a value function. They prove that this algorithm converges (almost surely) and that the limit of convergence has some desirable properties. The utility of the approximation method is illustrated via a computational case study involving the pricing of a path dependent financial derivative security that gives rise to an optimal stopping problem with a 100-dimensional state space
more »
« less
- Award ID(s):
- 1646229
- PAR ID:
- 10211835
- Date Published:
- Journal Name:
- Proc. of the Fifth Indian Control Conference
- Page Range / eLocation ID:
- 10 to 15
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We provide an approximation algorithm for network revenue management problems. In our approximation algorithm, we construct an approximate policy using value function approximations that are expressed as linear combinations of basis functions. We use a backward recursion to compute the coefficients of the basis functions in the linear combinations. If each product uses at most L resources, then the total expected revenue obtained by our approximate policy is at least [Formula: see text] of the optimal total expected revenue. In many network revenue management settings, although the number of resources and products can become large, the number of resources used by a product remains bounded. In this case, our approximate policy provides a constant-factor performance guarantee. Our approximate policy can handle nonstationarities in the customer arrival process. To our knowledge, our approximate policy is the first approximation algorithm for network revenue management problems under nonstationary arrivals. Our approach can incorporate the customer choice behavior among the products, and allows the products to use multiple units of a resource, while still maintaining the performance guarantee. In our computational experiments, we demonstrate that our approximate policy performs quite well, providing total expected revenues that are substantially better than its theoretical performance guarantee.more » « less
-
New families of direct serendipity and direct mixed finite elements on general planar, strictly convex polygons were recently defined by the authors. The finite elements of index r are H1 and H(div) conforming, respectively, and approximate optimally to order r+1 while using the minimal number of degrees of freedom. The shape function space consists of the full set of polynomials defined directly on the element and augmented with a space of supplemental functions. The supplemental functions were constructed as rational functions, which can be difficult to integrate accurately using numerical quadrature rules when the index is high. This can result in a loss of accuracy in certain cases. In this work, we propose alternative ways to construct the supplemental functions on the element as continuous piecewise polynomials. One approach results in supplemental functions that are in Hp for any pβ₯1. We prove the optimal approximation property for these new finite elements. We also perform numerical tests on them, comparing results for the original supplemental functions and the various alternatives. The new piecewise polynomial supplements can be integrated accurately, and therefore show better robustness with respect to the underlying meshes used.more » « less
-
Kumar, Amit; Ron-Zewi, Noga (Ed.)We initiate the study of centralized algorithms for welfare-maximizing allocation of goods to buyers subject to average-value constraints. We show that this problem is NP-hard to approximate beyond a factor of e/(e-1), and provide a 4e/(e-1)-approximate offline algorithm. For the online setting, we show that no non-trivial approximations are achievable under adversarial arrivals. Under i.i.d. arrivals, we present a polytime online algorithm that provides a constant approximation of the optimal (computationally-unbounded) online algorithm. In contrast, we show that no constant approximation of the ex-post optimum is achievable by an online algorithm.more » « less
-
This paper studies differentially private stochastic convex optimization (DP-SCO) in the presence of heavy-tailed gradients, where only a π kth-moment bound on sample Lipschitz constants is assumed, instead of a uniform bound. The authors propose a reduction-based approach that achieves the first near-optimal error rates (up to logarithmic factors) in this setting. Specifically, under ( π , πΏ ) (Ο΅,Ξ΄)-approximate differential privacy, they achieve an error bound of πΊ 2 π + πΊ π β ( π π π ) 1 β 1 π , n β G 2 β β +G k β β ( nΟ΅ d β β ) 1β k 1 β , up to a mild polylogarithmic factor in 1 πΏ Ξ΄ 1 β , where πΊ 2 G 2 β and πΊ π G k β are the 2nd and π kth moment bounds on sample Lipschitz constants. This nearly matches the lower bound established by Lowy and Razaviyayn (2023). Beyond the basic result, the authors introduce a suite of private algorithms that further improve performance under additional assumptions: an optimal algorithm under a known-Lipschitz constant, a near-linear time algorithm for smooth functions, and an optimal linear-time algorithm for smooth generalized linear models.more » « less
An official website of the United States government

