skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Title: The Inland Maintenance and Re-intensification of Tropical Storm Bill (2015) Part 2: Precipitation Microphysics
Abstract Tropical Storm Bill produced over 400 mmof rainfall to portions of southern Oklahoma from 16-20 June 2015, adding to the catastrophic urban and river flooding that occurred throughout the region in the month prior to landfall. The unprecedented excessive precipitation event that occurred across Oklahoma and Texas during May and June 2015 resulted in anomalously high soil moisture and latent heat fluxes over the region, acting to increase the available boundary layer moisture. Tropical Storm Bill progressed inland over the region of anomalous soil moisture and latent heat fluxes which helped maintain polarimetric radar signatures associated with tropical, warm rain events. Vertical profiles of polarimetric radar variables such as Z H , Z DR , K DP , and ρ hv were analyzed in time and space over Texas and Oklahoma. The profiles suggest that Tropical Storm Bill maintained warm rain signatures and collision-coalescence processes as it tracked hundreds of kilometers inland away from the landfall point consistent with tropical cyclone precipitation characteristics. Dual-frequency precipitation radar observations from the NASA GPM DPR were also analyzed post-landfall and showed similar signatures of collision-coalescence while Bill moved over north Texas, southern Oklahoma, eastern Missouri, and western Kentucky.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Hydrometeorology
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Landfalling tropical cyclones (TCs) often decay rapidly due to a decrease in moisture and energy fluxes over land when compared to the ocean surface. Occasionally, however, these cyclones maintain intensity or reintensify over land. Post-landfall maintenance and intensification of TCs over land may be a result of fluxes of moisture and energy derived from anomalously wet soils. These soils act similarly to a warm sea surface, in a phenomenon coined the “Brown Ocean Effect.” Tropical Storm (TS) Bill (2015) made landfall over a region previously moistened by anomalously heavy rainfall and displayed periods of reintensification and maintenance over land. This study evaluates the role of the Brown Ocean Effect on the observed maintenance and intensification of TS Bill using a combination of existing and novel approaches, including the evaluation of precursor conditions at varying temporal scales and making use of composite backward trajectories. Comparisons were made to landfalling TCs with similar paths that did not undergo TC maintenance and/or intensification (TCMI) as well as to TS Erin (2007), a known TCMI case. We show that the antecedent environment prior to TS Bill was similar to other known TCMI cases, but drastically different from the non-TCMI cases analyzed in this study. Furthermore, we show that contributions of evapotranspiration to the overall water vapor budget were non-negligible prior to TCMI cases and that evapotranspiration along storm inflow was significantly (p<0.05) greater for TCMI cases than non-TCMI cases suggesting a potential upstream contribution from the land surface. 
    more » « less
  2. Abstract

    We demonstrate the utility of transient polarimetric signatures (ZDRandKDPcolumns, a proxy for surges in a thunderstorm updraft) to explain variability in lightning flash rates in a tornadic supercell. Observational data from a WSR-88D and the Oklahoma lightning mapping array are used to map the temporal variance of polarimetric signatures and VHF sources from lightning channels. It is shown, via three-dimensional and cross-sectional analyses, that the storm was of inverted polarity resulting from anomalous electrification. Statistical analysis confirms that mean flash area in theZDRcolumn region was 10 times smaller than elsewhere in the storm. On an average, 5 times more flash initiations occurred withinZDRcolumn regions, thereby supporting existing theory of an inverse relationship between flash initiation rates and lightning channel extent. Segmentation and object identification algorithms are applied to gridded radar data to calculate metrics such as height, width, and volume ofZDRandKDPcolumns. Variability in lightning flash rates is best explained by the fluctuations inZDRcolumn volume with a Spearman’s rank correlation coefficient value of 0.72. The highest flash rates occur in conjunction with the deepestZDRcolumns (up to 5 km above environmental melting level) and largest volumes ofZDRcolumns extending up to the −20°C level (3 km above the melting level). Reduced flash rates toward the end of the analysis are indicative of weaker updrafts manifested as lowZDRcolumn volumes at and above the −10°C level. These findings are consistent with recent studies linking lightning to the interplay between storm dynamics, kinematics, thermodynamics, and precipitation microphysics.

    more » « less
  3. Abstract

    This study derives simple analytical expressions for the theoretical height profiles of particle number concentrations (Nt) and mean volume diameters (Dm) during the steady-state balance of vapor growth and collision–coalescence with sedimentation. These equations are general for both rain and snow gamma size distributions with size-dependent power-law functions that dictate particle fall speeds and masses. For collision–coalescence only,Nt(Dm) decreases (increases) as an exponential function of the radar reflectivity difference between two height layers. For vapor deposition only,Dmincreases as a generalized power law of this reflectivity difference. Simultaneous vapor deposition and collision–coalescence under steady-state conditions with conservation of number, mass, and reflectivity fluxes lead to a coupled set of first-order, nonlinear ordinary differential equations forNtandDm. The solutions to these coupled equations are generalized power-law functions of heightzforDm(z) andNt(z) whereby each variable is related to one another with an exponent that is independent of collision–coalescence efficiency. Compared to observed profiles derived from descending in situ aircraft Lagrangian spiral profiles from the CRYSTAL-FACE field campaign, these analytical solutions can on average capture the height profiles ofNtandDmwithin 8% and 4% of observations, respectively. Steady-state model projections of radar retrievals aloft are shown to produce the correct rapid enhancement of surface snowfall compared to the lowest-available radar retrievals from 500 m MSL. Future studies can utilize these equations alongside radar measurements to estimateNtandDmbelow radar tilt elevations and to estimate uncertain microphysical parameters such as collision–coalescence efficiencies.

    Significance Statement

    While complex numerical models are often used to describe weather phenomenon, sometimes simple equations can instead provide equally good or comparable results. Thus, these simple equations can be used in place of more complicated models in certain situations and this replacement can allow for computationally efficient and elegant solutions. This study derives such simple equations in terms of exponential and power-law mathematical functions that describe how the average size and total number of snow or rain particles change at different atmospheric height levels due to growth from the vapor phase and aggregation (the sticking together) of these particles balanced with their fallout from clouds. We catalog these mathematical equations for different assumptions of particle characteristics and we then test these equations using spirally descending aircraft observations and ground-based measurements. Overall, we show that these mathematical equations, despite their simplicity, are capable of accurately describing the magnitude and shape of observed height and time series profiles of particle sizes and numbers. These equations can be used by researchers and forecasters along with radar measurements to improve the understanding of precipitation and the estimation of its properties.

    more » « less
  4. Tropical storm Nate, which was a powerful hurricane prior to landfall along the US Gulf coast, traversed north and weakened considerably to a tropical depression as it moved near an instrumented site in Hunstville, AL. The outer rain bands lasted 18 h (03:00 to 21:00 UTC on 08 October 2017) and a 2D-video disdrometer (2DVD) captured the event which was shallow at times and indicative of pure warm rain processes. The 2DVD measurements are used for 3D reconstruction of drop shapes (including the rotationally asymmetric drops) and the drop-by-drop scattering matrix has been computed using Computer Simulation Technology integral equation solver for drop sizes >2.5 mm. From the scattering matrix elements, the polarimetric radar observables are simulated by integrating over 1 min consecutive segments of the event. These simulated values are compared with dual-polarized C-band radar data located at 15 km range from the 2DVD site to evaluate the contribution of the asymmetric drop shapes, specifically to differential reflectivity. The drop fall velocities and drop horizontal velocities in terms of magnitude and direction, all being derived from each drop image from two orthogonal cameras of the 2DVD, are also considered. 
    more » « less
  5. null (Ed.)
    Abstract The sensitivity of the inland wind decay to realistic inland surface roughness lengths and soil moisture contents is evaluated for strong, idealized tropical cyclones (TCs) of category 4 strength making landfall. Results show that the relative sensitivities to roughness and moisture differ throughout the decay process, and are dependent on the strength and size of the vortex. First, within 12 h of landfall, intense winds at the surface decay rapidly in reaction to the sudden change in surface roughness and decreasing enthalpy fluxes. Wind speeds above the boundary layer decay at a slower rate. Differences in soil moisture contents minimally affect intensity during the first 12 h, as the enhancement of latent heat fluxes from high moisture contents is countered by enhanced surface cooling. After TCs decay to tropical storm intensities, weakening slows and the sensitivity of the intensity decay to soil moisture increases. Increased latent heating becomes significant enough to combat surface temperature cooling, resulting in enhanced convection outside of the expanding radius of maximum winds. This supports a slower decay. Additionally, the decay of the radial wind profile by quadrant is highly asymmetric, as the rear and left-of-motion quadrants decay the fastest. Increasing surface roughness accelerates the decay of the strongest winds, while increasing soil moisture slows the decay of the larger TC wind field. Results have implications for inland forecasting of TC winds and understanding the potential for damage. 
    more » « less