skip to main content


Title: DoThisHere: Multimodal Interaction to Improve Cross-Application Tasks on Mobile Devices
Many computing tasks, such as comparison shopping, two-factor authentication, and checking movie reviews, require using multiple apps together. On large screens, "windows, icons, menus, pointer" (WIMP) graphical user interfaces (GUIs) support easy sharing of content and context between multiple apps. So, it is straightforward to see the content from one application and write something relevant in another application, such as looking at the map around a place and typing walking instructions into an email. However, although today's smartphones also use GUIs, they have small screens and limited windowing support, making it hard to switch contexts and exchange data between apps. We introduce DoThisHere, a multimodal interaction technique that streamlines cross-app tasks and reduces the burden these tasks impose on users. Users can use voice to refer to information or app features that are off-screen and touch to specify where the relevant information should be inserted or is displayed. With DoThisHere, users can access information from or carry information to other apps with less context switching. We conducted a survey to find out what cross-app tasks people are currently performing or wish to perform on their smartphones. Among the 125 tasks that we collected from 75 participants, we found that 59 of these tasks are not well supported currently. DoThisHere is helpful in completing 95% of these unsupported tasks. A user study, where users are shown the list of supported voice commands when performing a representative sample of such tasks, suggests that DoThisHere may reduce expert users' cognitive load; the Query action, in particular, can help users reduce task completion time.  more » « less
Award ID(s):
1900638
PAR ID:
10211968
Author(s) / Creator(s):
 ; ;
Date Published:
Journal Name:
UIST '20: The 33rd Annual ACM Symposium on User Interface Software and Technology
Page Range / eLocation ID:
35 to 44
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Voice-enabled technologies such as VoiceOver (screen reader) and the Seeing AI app (image recognition) have revolutionized daily tasks for people with visual disabilities, fostering greater independence and information access. However, a gap remains in understanding the user experience (UX) of these technologies. This study investigated how those with visual disabilities interacted with VoiceOver and the Seeing AI app. A convenience sample of eight participants with visual disabilities engaged in direct observations while using these technologies. The study utilized the System Usability Scale (SUS) to assess perceived usability and analyzed findings using descriptive statistics. Results indicated a poorer UX with VoiceOver compared to the Seeing AI app, with challenges identified in graphical user interfaces (GUIs), voice and gesture commands. Relevant recommendations were made to enhance usability. The study emphasizes the need for more intuitive GUIs and optimized voice/gesture interactions for users with visual disabilities.

     
    more » « less
  2. Kim, JH. ; Singh, M. ; Khan, J. ; Tiwary, U.S. ; Sur, M. ; Singh, D. (Ed.)
    Cyberattacks and malware infestation are issues that surround most operating systems (OS) these days. In smartphones, Android OS is more susceptible to malware infection. Although Android has introduced several mechanisms to avoid cyberattacks, including Google Play Protect, dynamic permissions, and sign-in control notifications, cyberattacks on Android-based phones are prevalent and continuously increasing. Most malware apps use critical permissions to access resources and data to compromise smartphone security. One of the key reasons behind this is the lack of knowledge for the usage of permissions in users. In this paper, we introduce Permission-Educator, a cloud-based service to educate users about the permissions associated with the installed apps in an Android-based smartphone. We developed an Android app as a client that allows users to categorize the installed apps on their smartphones as system or store apps. The user can learn about permissions for a specific app and identify the app as benign or malware through the interaction of the client app with the cloud service. We integrated the service with a web server that facilitates users to upload any Android application package file, i.e. apk, to extract information regarding the Android app and display it to the user. 
    more » « less
  3. Intelligent voice assistants, and the thirdparty apps (aka “skills” or “actions”) that power them, are increasing in popularity and beginning to experiment with the ability to continuously listen to users. This paper studies how privacy concerns related to such always-listening voice assistants might affect consumer behavior and whether certain privacy mitigations would render them more acceptable. To explore these questions with more realistic user choices, we built an interactive app store that allowed users to install apps for a hypothetical always-listening voice assistant. In a study with 214 participants, we asked users to browse the app store and install apps for different voice assistants that offered varying levels of privacy protections. We found that users were generally more willing to install continuously-listening apps when there were greater privacy protections, but this effect was not universally present. The majority did not review any permissions in detail, but still expressed a preference for stronger privacy protections. Our results suggest that privacy factors into user choice, but many people choose to skip this information. 
    more » « less
  4. null (Ed.)
    Representing the semantics of GUI screens and components is crucial to data-driven computational methods for modeling user-GUI interactions and mining GUI designs. Existing GUI semantic representations are limited to encoding either the textual content, the visual design and layout patterns, or the app contexts. Many representation techniques also require significant manual data annotation efforts. This paper presents Screen2Vec, a new self-supervised technique for generating representations in embedding vectors of GUI screens and components that encode all of the above GUI features without requiring manual annotation using the context of user interaction traces. Screen2Vec is inspired by the word embedding method Word2Vec, but uses a new two-layer pipeline informed by the structure of GUIs and interaction traces and incorporates screen- and app-specific metadata. Through several sample downstream tasks, we demonstrate Screen2Vec’s key useful properties: representing between-screen similarity through nearest neighbors, composability, and capability to represent user tasks. 
    more » « less
  5. Many households include children who use voice personal assistants (VPA) such as Amazon Alexa. Children benefit from the rich functionalities of VPAs and third-party apps but are also exposed to new risks in the VPA ecosystem. In this article, we first investigate “risky” child-directed voice apps that contain inappropriate content or ask for personal information through voice interactions. We build SkillBot—a natural language processing-based system to automatically interact with VPA apps and analyze the resulting conversations. We find 28 risky child-directed apps and maintain a growing dataset of 31,966 non-overlapping app behaviors collected from 3,434 Alexa apps. Our findings suggest that although child-directed VPA apps are subject to stricter policy requirements and more intensive vetting, children remain vulnerable to inappropriate content and privacy violations. We then conduct a user study showing that parents are concerned about the identified risky apps. Many parents do not believe that these apps are available and designed for families/kids, although these apps are actually published in Amazon’s “Kids” product category. We also find that parents often neglect basic precautions, such as enabling parental controls on Alexa devices. Finally, we identify a novel risk in the VPA ecosystem: confounding utterances or voice commands shared by multiple apps that may cause a user to interact with a different app than intended. We identify 4,487 confounding utterances, including 581 shared by child-directed and non-child-directed apps. We find that 27% of these confounding utterances prioritize invoking a non-child-directed app over a child-directed app. This indicates that children are at real risk of accidentally invoking non-child-directed apps due to confounding utterances. 
    more » « less