skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Performance assessment of an optimal load control algorithm for providing contingency service
In prior work, the Distributed Gradient Projection (DGP) algorithm was proposed to allow loads or load aggregators to provide contingency service to the grid using local frequency measurements. The DGP algorithm was shown to perform well in linear simulations. The goal of this work is to evaluate the performance of the DGP algorithm in more realistic scenarios and its robustness to issues of practical implementation, such as time delay, model mismatch, measurement noise, and stochastic disturbance. Simulation results from the IEEE 39-bus system indicate that the DGP algorithm performs well in mitigating the effects of contingencies and that it is robust to issues of practical implementation.  more » « less
Award ID(s):
1646229
PAR ID:
10211983
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
North American Power Symposium (NAPS)
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    It is desirable to combine the expressive power of deep learning with Gaussian Process (GP) in one expressive Bayesian learning model. Deep kernel learning showed success as a deep network used for feature extraction. Then, a GP was used as the function model. Recently, it was suggested that, albeit training with marginal likelihood, the deterministic nature of a feature extractor might lead to overfitting, and replacement with a Bayesian network seemed to cure it. Here, we propose the conditional deep Gaussian process (DGP) in which the intermediate GPs in hierarchical composition are supported by the hyperdata and the exposed GP remains zero mean. Motivated by the inducing points in sparse GP, the hyperdata also play the role of function supports, but are hyperparameters rather than random variables. It follows our previous moment matching approach to approximate the marginal prior for conditional DGP with a GP carrying an effective kernel. Thus, as in empirical Bayes, the hyperdata are learned by optimizing the approximate marginal likelihood which implicitly depends on the hyperdata via the kernel. We show the equivalence with the deep kernel learning in the limit of dense hyperdata in latent space. However, the conditional DGP and the corresponding approximate inference enjoy the benefit of being more Bayesian than deep kernel learning. Preliminary extrapolation results demonstrate expressive power from the depth of hierarchy by exploiting the exact covariance and hyperdata learning, in comparison with GP kernel composition, DGP variational inference and deep kernel learning. We also address the non-Gaussian aspect of our model as well as way of upgrading to a full Bayes inference. 
    more » « less
  2. Almost all practical systems rely heavily on physical parameters. As a result, parameter sensitivity, or the extent to which perturbations in parameter values affect the state of a system, is intrinsically connected to system design and optimization. We present TADsens, a method for computing the parameter sensitivities of an output of a differential algebraic equation (DAE) system. Specifically, we provide rigorous, insightful theory for adjoint sensitivity computation of DAEs, along with an efficient and numerically well-posed algorithm implemented in Berkeley MAPP. Our theory and implementation advances resolve longstanding issues that have impeded adoption of adjoint transient sensitivities in circuit simulators for over 5 decades. We present results and comparisons on two nonlinear analog circuits. TADsens is numerically well posed and accurate, and faster by a factor of 300 over direct sensitivity computation on a circuit with over 150 unknowns and 600 parameters. 
    more » « less
  3. A practical algorithm to compute the fundamental domain of an arithmetic Fuchsian group was given by Voight, and implemented in Magma. It was later expanded by Page to the case of arithmetic Kleinian groups. We combine and improve on parts of both algorithms to produce a more efficient algorithm for arithmetic Fuchsian groups. This algorithm is implemented in PARI/GP, and we demonstrate the improvements by comparing running times versus the live Magma implementation. 
    more » « less
  4. This study reports the development, validation, and implementation of a practical exam to assess science practices in an introductory physics laboratory. The exam asks students to design and conduct an investigation, perform data analysis, and write an argument. The exam was validated with advanced physics undergraduate students and undergraduate students in introductory physics lecture courses. Face validity has been established by administering the practical in 65 laboratory sections over the course of three semesters. We found that the greatest source of variability in this exam was due to instructor grading issues and discuss the implications of this result for our ongoing assessment efforts. 
    more » « less
  5. Using sensors to monitor signals produced by drivers is a way to help better understand how emotions contribute to unsafe driving habits. The need for intuitive machines that can interpret intentional and unintentional signals is imperative for our modern world. However, in complex human–machine work environments, many sensors will not work due to compatibility issues, noise, or practical constraints. This review focuses on practical sensors that have the potential to provide reliable monitoring and meaningful feedback to vehicle operators—such as drivers, train operators, pilots, astronauts—as well as being feasible for implementation and integration with existing work infrastructure. Such an affect-sensitive intelligent vehicle might sound an alarm if signals indicate the driver has become angry or stressed, take control of the vehicle if needed, and collaborate with other vehicles to build a stress map that improves roadway safety. Toward such vehicles, this paper provides a review of emerging sensor technologies for driver monitoring. In our research, we look at sensors used in affect detection. This insight is especially helpful for anyone challenged with accurately understanding affective information, like the autistic population. This paper also includes material on sensors and feedback for drivers from populations that may have special needs. 
    more » « less