Three-dimensional learning (3DL) is an approach to science instruction that was developed for K-12 science education and that can provide guidance for improving undergraduate physics laboratories. In this paper, we describe efforts to comprehensively integrate 3DL into a sequence of undergraduate introductory physics for life sciences (IPLS) laboratory courses. This paper is tailored for introductory physics faculty interested in advancing their course's learning goals by simultaneously engaging students in experimental practices, scientific reasoning, and conceptual knowledge. We first review how several well-known laboratory curricula are already implicitly aligned with 3DL. We then describe our IPLS course sequence and show how each 3DL dimension—science and engineering practices, disciplinary core ideas, and crosscutting concepts—is integrated throughout the curriculum. To support implementation, we provide samples of our course documentation, a detailed account of our 3DL integration efforts, a guide to training and supporting teaching and learning assistants in a 3DL course, and a sample set of activities to guide students in participating in 3DL instruction in the supplementary material.
more »
« less
Introductory physics laboratory practical exam development: Investigation design, explanation, and argument
This study reports the development, validation, and implementation of a practical exam to assess science practices in an introductory physics laboratory. The exam asks students to design and conduct an investigation, perform data analysis, and write an argument. The exam was validated with advanced physics undergraduate students and undergraduate students in introductory physics lecture courses. Face validity has been established by administering the practical in 65 laboratory sections over the course of three semesters. We found that the greatest source of variability in this exam was due to instructor grading issues and discuss the implications of this result for our ongoing assessment efforts.
more »
« less
- Award ID(s):
- 1725655
- PAR ID:
- 10179268
- Date Published:
- Journal Name:
- Physics Education Research Conference
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Materials science skills and knowledge, as an addition to the traditional curricula for physics and chemistry students, can be highly valuable for transition to graduate study or other career paths in materials science. The chemistry and physics departments at Weber State University (WSU) are harnessing an interdisciplinary approach to materials science undergraduate research. These lecture and laboratory courses, and capstone experiences are, by design, complementary and can be taken independently of one another and avoid unnecessary overlap or repetition. Specifically, we have a senior level materials theory course and a separate materials characterization laboratory course in the physics department, and a new lecture/laboratory course in the chemistry department. The chemistry laboratory experience emphasizes synthesis, while the physics lab course is focused on characterization techniques. Interdisciplinary research projects are available for students in both departments at the introductory or senior level. Using perovskite materials for solar cells, WSU is providing a framework of different perspectives in materials: making materials, the micro- and macrostructure of materials, and the interplay between materials to create working electronic devices. Metal-halide perovskites, a cutting-edge technology in the solar industry, allow WSU to showcase that undergraduate research can be relevant and important. The perovskite materials are made in the chemistry department and characterized in the physics department. The students involved directly organize the collaborative exchange of samples and data, working together to design experiments building ownership over the project and its outcomes. We will discuss the suite of options available to WSU students, how we have designed these curricula and research, as well as some results from students who have gone through the programs.more » « less
-
Self-regulated learning (SRL) is an essential factor in academic success. Self-regulated learning is a process where learners set clear goals, monitor progress toward attainment of those goals, and adapt their strategies to improve their learning. Because SRL is often not explicitly integrated into the classroom, students struggle to identify and use learning techniques empirically proven to be more successful than others. SRL is a learned skill students can develop over time that has been found to be related to high achievement and self-efficacy. This paper examines the effects of introducing SRL strategies into an undergraduate introductory physics classroom. The degree to which the students were self-regulated learners was correlated with their test averages (r = 0.23, p < 0.05). Students reported that they found the SRL instruction helpful (3.5 out of 5.0 on a 5-point scale) and 86% of the students felt the time spent on the instruction was generally appropriate. Students’ preferred study methods changed over the course of the semester, indicating that students applied SRL by adapting their learning processes based on which methods were most effective in helping them study for an upcoming exam and opting not to use techniques no longer perceived as useful. Higher achieving students were more likely to settle on highly effective techniques by the end of the semester, while lower achieving students continued to modify their learning processes.more » « less
-
Preparing for high-stakes exams in introductory physics courses is generally a self-regulated activity. Compared to other exam reviewing strategies, doing practice exams has been shown to help students recognize gaps in their knowledge, encourage active practicing, and produce long-term retention. However, many students, particularly students who are struggling with the course material, are not guided by research-based study strategies and do not use practice exams effectively. Using data collected from a fully online course in Spring 2021, this study examines two interventions aimed at improving student selfregulated studying behaviors and enhancing student metacognition during exam preparation. We found that a modified format of online practice exams with one attempt per question and delayed feedback, increases the accuracy of feedback about student readiness for exams but does not change the accuracy of their predicted exam scores or studying behaviors. Additionally, an added mock exam one week before the actual exam impacts students’ intentions for studying but does not impact actual study behaviors or facilitate metacognition. These results suggest that interventions designed to improve exam preparation likely need to include explicit instruction on study strategies and student beliefs about learning.more » « less
-
Henderson, Charles (Ed.)Preparing for high-stakes exams in introductory physics courses is generally a self-regulated activity. Compared to other exam reviewing strategies, doing practice exams has been shown to help students recognize gaps in their knowledge, encourage active practicing, and produce long-term retention. However, many students, particularly students who are struggling with the course material, are not guided by research-based study strategies and do not use practice exams effectively. Using data collected from a fully online course in Spring 2021, this study examines two interventions aimed at improving student selfregulated studying behaviors and enhancing student metacognition during exam preparation. We found that a modified format of online practice exams with one attempt per question and delayed feedback, increases the accuracy of feedback about student readiness for exams but does not change the accuracy of their predicted exam scores or studying behaviors. Additionally, an added mock exam one week before the actual exam impacts students’ intentions for studying but does not impact actual study behaviors or facilitate metacognition. These results suggest that interventions designed to improve exam preparation likely need to include explicit instruction on study strategies and student beliefs about learning.more » « less