skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: In-Line Microelectrode Arrays for Impedance Mapping of Microphysiological Systems
Herein, a 60-electrode array is fabricated down the length of a microchamber for analysis of a microphysiological system. The electrode array is fabricated by standard photolithographic, metallization, and etching techniques. Permutations of 2-wire impedance measurements (10 Hz to 1 MHz) are made along the length of the microchannel using a multiplexer, Gamry potentiostat, and custom Labview code. An impedance "heat map" is created via custom algorithms. Spatial resolution and mapping capabilities are exhibited using conductive NaCl solutions and 2D cell culture.  more » « less
Award ID(s):
1846911
PAR ID:
10212077
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2020 IEEE SENSORS
Page Range / eLocation ID:
1 to 4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. While classical electrochemical impedance spectroscopy (EIS) focuses on measurements from a single working electrode, dense active microelectrode arrays offer opportunities for new modes of sensing. Here we present experimental results with an integrated sensor array for electrochemical imaging. The system uses a 100 x 100 custom CMOS electrode array with 10 micron pixels, which measures impedance at frequencies up to 100 MHz. The sensor chip is uniquely designed to take advantage of the electrostatic coupling between groups of nearby pixels to re-shape the local electric field. Multiple bias voltages and clock phases create new types of signal diversity that will enable enhanced sensing modes for computational imaging and impedance tomography. 
    more » « less
  2. Zinc dry electrodes were fabricated and investigated for wearable electrophysiology recording. Results from electrochemical impedance spectroscopy and electromyography functionality testing show that zinc electrodes are suitable for use in electrophysiology. Two electrode configurations were tested: a standard disc and a custom tripolar concentric ring configuration. However, no functional benefit was observed with the tripolar concentric ring electrodes as compared to the disc electrodes.Zinc, Electrodes, Concentric Ring Electrodes, EMG, Biosensing 
    more » « less
  3. Stretchable three-dimensional (3D) penetrating microelectrode arrays have potential utility in various fields, including neuroscience, tissue engineering, and wearable bioelectronics. These 3D microelectrode arrays can penetrate and conform to dynamically deforming tissues, thereby facilitating targeted sensing and stimulation of interior regions in a minimally invasive manner. However, fabricating custom stretchable 3D microelectrode arrays presents material integration and patterning challenges. In this study, we present the design, fabrication, and applications of stretchable microneedle electrode arrays (SMNEAs) for sensing local intramuscular electromyography signals ex vivo. We use a unique hybrid fabrication scheme based on laser micromachining, microfabrication, and transfer printing to enable scalable fabrication of individually addressable SMNEA with high device stretchability (60 to 90%). The electrode geometries and recording regions, impedance, array layout, and length distribution are highly customizable. We demonstrate the use of SMNEAs as bioelectronic interfaces in recording intramuscular electromyography from various muscle groups in the buccal mass ofAplysia. 
    more » « less
  4. Abstract The frequency dependence of electrokinetic particle trapping using large‐area (>mm2) conductive carbon nanofiber (CNF) mat electrodes is investigated. The fibers provide nanoscale geometric features for the generation of high electric field gradients, which is necessary for particle trapping via dielectrophoresis (DEP). A device was fabricated with an array of microfluidic wells for repeated experiments; each well included a CNF mat electrode opposing an aluminum electrode. Fluorescent microspheres (1 µm) were trapped at various electric field frequencies between 30 kHz and 1 MHz. Digital images of each well were analyzed to quantify particle trapping. DEP trapping by the CNF mats was greater at all tested frequencies than that of the control of no applied field, and the greatest trapping was observed at a frequency of 600 kHz, where electrothermal flow is more significantly weakened than DEP. Theoretical analysis and measured impedance spectra indicate that this result was due to a combination of the frequency dependence of DEP and capacitive behavior of the well‐based device. 
    more » « less
  5. Conventional electroencephalography (EEG) requires placement of several electrode sensors on the scalp and, accompanied by lead wires and bulky instrumentation, makes for an uncomfortable experience. Recent efforts in miniaturization and system integration have enabled smaller systems, such as wearable, in-ear EEG devices that are gaining popularity for their unobtrusive form factor. Although in-ear EEG has been demonstrated in recent works, dynamics of the ear and ear canal that directly affect electrophysiological measurements have been largely ignored. Here, we present a quantitative analysis of electrode-skin impedance for dry-contact in-ear EEG that accounts for cerumen (earwax) and electrodermal (sweat gland) response. Custom fitted earmolds with 16 embedded electrodes were developed to map the skin conductance in the ear canal of 3 subjects. In the presence of cerumen, the measured average dry-contact impedance in the ear canal was 86% higher than canals removed of cerumen. Electrodermal activity was also found to play a role in electrode-skin impedance, showing up to 25% decrease in dry-contact impedance in response to tactile stimulation. The better understanding of the dynamics of in-ear conditions serves to improve consistency and accuracy of in-ear electrophysiology. 
    more » « less