- PAR ID:
- 10212078
- Date Published:
- Journal Name:
- WWW '20: Proceedings of The Web Conference 2020
- Page Range / eLocation ID:
- 1205 to 1216
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
This work investigates the challenge of learning and reasoning for Commonsense Question Answering given an external source of knowledge in the form of a knowledge graph (KG). We propose a novel graph neural network architecture, called Dynamic Relevance Graph Network (DRGN). DRGN operates on a given KG subgraph based on the question and answers entities and uses the relevance scores between the nodes to establish new edges dynamically for learning node representations in the graph network. This explicit usage of relevance as graph edges has the following advantages, a) the model can exploit the existing relationships, re-scale the node weights, and influence the way the neighborhood nodes’ representations are aggregated in the KG subgraph, b) It potentially recovers the missing edges in KG that are needed for reasoning. Moreover, as a byproduct, our model improves handling the negative questions due to considering the relevance between the question node and the graph entities. Our proposed approach shows competitive performance on two QA benchmarks, CommonsenseQA and OpenbookQA, compared to the state-of-the-art published results.more » « less
-
null (Ed.)This work deals with the challenge of learning and reasoning over multi-hop question answering (QA). We propose a graph reasoning network based on the semantic structure of the sentences to learn cross paragraph reasoning paths and find the supporting facts and the answer jointly. The proposed graph is a heterogeneous document-level graph that contains nodes of type sentence (question, title, and other sentences), and semantic role labeling sub-graphs per sentence that contain arguments as nodes and predicates as edges. Incorporating the argument types, the argument phrases, and the semantics of the edges originated from SRL predicates into the graph encoder helps in finding and also the explainability of the reasoning paths. Our proposed approach shows competitive performance on the HotpotQA distractor setting benchmark compared to the recent state-of-the-art models.more » « less
-
Knowledge graphs are graph-based data models which can represent real-time data that is constantly growing with the addition of new information. The question-answering systems over knowledge graphs (KGQA) retrieve answers to a natural language question from the knowledge graph. Most existing KGQA systems use static knowledge bases for offline training. After deployment, they fail to learn from unseen new entities added to the graph. There is a need for dynamic algorithms which can adapt to the evolving graphs and give interpretable results. In this research work, we propose using new auction algorithms for question answering over knowledge graphs. These algorithms can adapt to changing environments in real-time, making them suitable for offline and online training. An auction algorithm computes paths connecting an origin node to one or more destination nodes in a directed graph and uses node prices to guide the search for the path. The prices are initially assigned arbitrarily and updated dynamically based on defined rules. The algorithm navigates the graph from the high-price to the low-price nodes. When new nodes and edges are dynamically added or removed in an evolving knowledge graph, the algorithm can adapt by reusing the prices of existing nodes and assigning arbitrary prices to the new nodes. For subsequent related searches, the “learned” prices provide the means to “transfer knowledge” and act as a “guide”: to steer it toward the lower-priced nodes. Our approach reduces the search computational effort by 60% in our experiments, thus making the algorithm computationally efficient. The resulting path given by the algorithm can be mapped to the attributes of entities and relations in knowledge graphs to provide an explainable answer to the query. We discuss some applications for which our method can be used.
-
Knowledge graph is ubiquitous and plays an important role in many real-world applications, including recommender systems, question answering, fact-checking, and so on. However, most of the knowledge graphs are incomplete which can hamper their practical usage. Fortunately, knowledge graph completion (KGC) can mitigate this problem by inferring missing edges in the knowledge graph according to the existing information. In this paper, we propose a novel KGC method named ABM (Attention-Based Message passing) which focuses on predicting the relation between any two entities in a knowledge graph. The proposed ABM consists of three integral parts, including (1) context embedding, (2) structure embedding, and (3) path embedding. In the context embedding, the proposed ABM generalizes the existing message passing neural network to update the node embedding and the edge embedding to assimilate the knowledge of nodes' neighbors, which captures the relative role information of the edge that we want to predict. In the structure embedding, the proposed method overcomes the shortcomings of the existing GNN method (i.e., most methods ignore the structural similarity between nodes.) by assigning different attention weights to different nodes while doing the aggregation. Path embedding generates paths between any two entities and treats these paths as sequences. Then, the sequence can be used as the input of the Transformer to update the embedding of the knowledge graph to gather the global role of the missing edges. By utilizing these three mutually complementary strategies, the proposed ABM is able to capture both the local and global information which in turn leads to a superb performance. Experiment results show that ABM outperforms baseline methods on a wide range of datasets.more » « less
-
This research studies graph-based approaches for Answer Sentence Selection (AS2), an essential component for retrieval-based Question Answering (QA) systems. During offline learning, our model constructs a small-scale relevant training graph per question in an unsupervised manner, and integrates with Graph Neural Networks. Graph nodes are question sentence to answer sentence pairs. We train and integrate state-of-the-art (SOTA) models for computing scores between question-question, question-answer, and answer-answer pairs, and use thresholding on relevance scores for creating graph edges. Online inference is then performed to solve the AS2 task on unseen queries. Experiments on two well-known academic benchmarks and a real-world dataset show that our approach consistently outperforms SOTA QA baseline models.more » « less