skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Auction-Based Learning for Question Answering over Knowledge Graphs

Knowledge graphs are graph-based data models which can represent real-time data that is constantly growing with the addition of new information. The question-answering systems over knowledge graphs (KGQA) retrieve answers to a natural language question from the knowledge graph. Most existing KGQA systems use static knowledge bases for offline training. After deployment, they fail to learn from unseen new entities added to the graph. There is a need for dynamic algorithms which can adapt to the evolving graphs and give interpretable results. In this research work, we propose using new auction algorithms for question answering over knowledge graphs. These algorithms can adapt to changing environments in real-time, making them suitable for offline and online training. An auction algorithm computes paths connecting an origin node to one or more destination nodes in a directed graph and uses node prices to guide the search for the path. The prices are initially assigned arbitrarily and updated dynamically based on defined rules. The algorithm navigates the graph from the high-price to the low-price nodes. When new nodes and edges are dynamically added or removed in an evolving knowledge graph, the algorithm can adapt by reusing the prices of existing nodes and assigning arbitrary prices to the new nodes. For subsequent related searches, the “learned” prices provide the means to “transfer knowledge” and act as a “guide”: to steer it toward the lower-priced nodes. Our approach reduces the search computational effort by 60% in our experiments, thus making the algorithm computationally efficient. The resulting path given by the algorithm can be mapped to the attributes of entities and relations in knowledge graphs to provide an explainable answer to the query. We discuss some applications for which our method can be used.

 
more » « less
Award ID(s):
2114789
PAR ID:
10502608
Author(s) / Creator(s):
; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Information
Volume:
14
Issue:
6
ISSN:
2078-2489
Page Range / eLocation ID:
336
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work investigates the challenge of learning and reasoning for Commonsense Question Answering given an external source of knowledge in the form of a knowledge graph (KG). We propose a novel graph neural network architecture, called Dynamic Relevance Graph Network (DRGN). DRGN operates on a given KG subgraph based on the question and answers entities and uses the relevance scores between the nodes to establish new edges dynamically for learning node representations in the graph network. This explicit usage of relevance as graph edges has the following advantages, a) the model can exploit the existing relationships, re-scale the node weights, and influence the way the neighborhood nodes’ representations are aggregated in the KG subgraph, b) It potentially recovers the missing edges in KG that are needed for reasoning. Moreover, as a byproduct, our model improves handling the negative questions due to considering the relevance between the question node and the graph entities. Our proposed approach shows competitive performance on two QA benchmarks, CommonsenseQA and OpenbookQA, compared to the state-of-the-art published results. 
    more » « less
  2. null (Ed.)
    Logical queries constitute an important subset of questions posed in knowledge graph question answering systems. Yet, effectively answering logical queries on large knowledge graphs remains a highly challenging problem. Traditional subgraph matching based methods might suffer from the noise and incompleteness of the underlying knowledge graph, often with a prolonged online response time. Recently, an alternative type of method has emerged whose key idea is to embed knowledge graph entities and the query in an embedding space so that the embedding of answer entities is close to that of the query. Compared with subgraph matching based methods, it can better handle the noisy or missing information in knowledge graph, with a faster online response. Promising as it might be, several fundamental limitations still exist, including the linear transformation assumption for modeling relations and the inability to answer complex queries with multiple variable nodes. In this paper, we propose an embedding based method (NewLook) to address these limitations. Our proposed method offers three major advantages. First (Applicability), it supports four types of logical operations and can answer queries with multiple variable nodes. Second (Effectiveness), the proposed NewLook goes beyond the linear transformation assumption, and thus consistently outperforms the existing methods. Third (Efficiency), compared with subgraph matching based methods, NewLook is at least 3 times faster in answering the queries; compared with the existing embed-ding based methods, NewLook bears a comparable or even faster online response and offline training time. 
    more » « less
  3. null (Ed.)
    We introduce delft, a factoid question answering system which combines the nuance and depth of knowledge graph question answering approaches with the broader coverage of free-text. delft builds a free-text knowledge graph from Wikipedia, with entities as nodes and sentences in which entities co-occur as edges. For each question, delft finds the subgraph linking question entity nodes to candidates using text sentences as edges, creating a dense and high coverage semantic graph. A novel graph neural network reasons over the free-text graph—combining evidence on the nodes via information along edge sentences—to select a final answer. Experiments on three question answering datasets show delft can answer entity-rich questions better than machine reading based models, bert-based answer ranking and memory networks. delft’s advantage comes from both the high coverage of its free-text knowledge graph—more than double that of dbpedia relations—and the novel graph neural network which reasons on the rich but noisy free-text evidence. 
    more » « less
  4. Knowledge graph is ubiquitous and plays an important role in many real-world applications, including recommender systems, question answering, fact-checking, and so on. However, most of the knowledge graphs are incomplete which can hamper their practical usage. Fortunately, knowledge graph completion (KGC) can mitigate this problem by inferring missing edges in the knowledge graph according to the existing information. In this paper, we propose a novel KGC method named ABM (Attention-Based Message passing) which focuses on predicting the relation between any two entities in a knowledge graph. The proposed ABM consists of three integral parts, including (1) context embedding, (2) structure embedding, and (3) path embedding. In the context embedding, the proposed ABM generalizes the existing message passing neural network to update the node embedding and the edge embedding to assimilate the knowledge of nodes' neighbors, which captures the relative role information of the edge that we want to predict. In the structure embedding, the proposed method overcomes the shortcomings of the existing GNN method (i.e., most methods ignore the structural similarity between nodes.) by assigning different attention weights to different nodes while doing the aggregation. Path embedding generates paths between any two entities and treats these paths as sequences. Then, the sequence can be used as the input of the Transformer to update the embedding of the knowledge graph to gather the global role of the missing edges. By utilizing these three mutually complementary strategies, the proposed ABM is able to capture both the local and global information which in turn leads to a superb performance. Experiment results show that ABM outperforms baseline methods on a wide range of datasets. 
    more » « less
  5. Knowledge graph reasoning plays a pivotal role in many real-world applications, such as network alignment, computational fact-checking, recommendation, and many more. Among these applications, knowledge graph completion (KGC) and multi-hop question answering over knowledge graph (Multi-hop KGQA) are two representative reasoning tasks. In the vast majority of the existing works, the two tasks are considered separately with different models or algorithms. However, we envision that KGC and Multi-hop KGQA are closely related to each other. Therefore, the two tasks will benefit from each other if they are approached adequately. In this work, we propose a neural model named BiNet to jointly handle KGC and multi-hop KGQA, and formulate it as a multi-task learning problem. Specifically, our proposed model leverages a shared embedding space and an answer scoring module, which allows the two tasks to automatically share latent features and learn the interactions between natural language question decoder and answer scoring module. Compared to the existing methods, the proposed BiNet model addresses both multi-hop KGQA and KGC tasks simultaneously with superior performance. Experiment results show that BiNet outperforms state-of-the-art methods on a wide range of KGQA and KGC benchmark datasets. 
    more » « less