skip to main content


Title: Action Completeness Modeling with Background Aware Networks for Weakly-Supervised Temporal Action Localization
The state-of-the-art of fully-supervised methods for temporal action localization from untrimmed videos has achieved impressive results. Yet, it remains unsatisfactory for the weakly-supervised temporal action localization, where only video-level action labels are given without the timestamp annotation on when the actions occur. The main reason comes from that, the weakly-supervised networks only focus on the highly discriminative frames, but there are some ambiguous frames in both background and action classes. The ambiguous frames in background class are very similar to the real actions, which may be treated as target actions and result in false positives. On the other hand, the ambiguous frames in action class which possibly contain action instances, are prone to be false negatives by the weakly-supervised networks and result in a coarse localization. To solve these problems, we introduce a novel weakly-supervised Action Completeness Modeling with Back- ground Aware Networks (ACM-BANets). Our Background Aware Network (BANet) contains a weight-sharing two-branch architecture, with an action guided Background aware Temporal Attention Module (B-TAM) and an asymmetrical training strategy, to suppress both highly discriminative and ambiguous background frames to remove the false positives. Our action completeness modeling contains multiple BANets, and the BANets are forced to discover different but complementary action instances to completely localize the action instances in both highly discriminative and ambiguous action frames. In the 𝑖-th iteration, the 𝑖-th BANet discovers the discriminative features, which are then erased from the feature map. The partially-erased feature map is fed into the (i+1)-th BANet of the next iteration to force this BANet to discover discriminative features different from the 𝑖-th BANet. Evaluated on two challenging untrimmed video datasets, THUMOS14 and ActivityNet1.3, our approach outperforms all the current weakly-supervised methods for temporal action localization.  more » « less
Award ID(s):
1646162
NSF-PAR ID:
10212180
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of ACM Multimedia Conference 2020
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Weakly-supervised Temporal Action Localization (WTAL) aims to classify and localize action instances in untrimmed videos with only video-level labels. Existing methods typically use snippet-level RGB and optical flow features extracted from pre-trained extractors directly. Because of two limitations: the short temporal span of snippets and the inappropriate initial features, these WTAL methods suffer from the lack of effective use of temporal information and have limited performance. In this paper, we propose the Temporal Feature Enhancement Dilated Convolution Network (TFE-DCN) to address these two limitations. The proposed TFE-DCN has an enlarged receptive field that covers a long temporal span to observe the full dynamics of action instances, which makes it powerful to capture temporal dependencies between snippets. Furthermore, we propose the Modality Enhancement Module that can enhance RGB features with the help of enhanced optical flow features, making the overall features appropriate for the WTAL task. Experiments conducted on THUMOS’14 and ActivityNet v1.3 datasets show that our proposed approach far outperforms state-of-the-art WTAL methods. 
    more » « less
  2. Understanding human behavior and activity facilitates advancement of numerous real-world applications, and is critical for video analysis. Despite the progress of action recognition algorithms in trimmed videos, the majority of real-world videos are lengthy and untrimmed with sparse segments of interest. The task of temporal activity detection in untrimmed videos aims to localize the temporal boundary of actions and classify the action categories. Temporal activity detection task has been investigated in full and limited supervision settings depending on the availability of action annotations. This paper provides an extensive overview of deep learning-based algorithms to tackle temporal action detection in untrimmed videos with different supervision levels including fully-supervised, weakly-supervised, unsupervised, self-supervised, and semi-supervised. In addition, this paper reviews advances in spatio-temporal action detection where actions are localized in both temporal and spatial dimensions. Action detection in online setting is also reviewed where the goal is to detect actions in each frame without considering any future context in a live video stream. Moreover, the commonly used action detection benchmark datasets and evaluation metrics are described, and the performance of the state-of-the-art methods are compared. Finally, real-world applications of temporal action detection in untrimmed videos and a set of future directions are discussed. 
    more » « less
  3. Video anomaly detection (VAD) – commonly formulated as a multiple-instance learning problem in a weakly-supervised manner due to its labor-intensive nature – is a challenging problem in video surveillance where the frames of anomaly need to be localized in an untrimmed video. In this paper, we first propose to utilize the ViT-encoded visual features from CLIP, in contrast with the conventional C3D or I3D features in the domain, to efficiently extract discriminative representations in the novel technique. We then model temporal de- pendencies and nominate the snippets of interest by leveraging our proposed Temporal Self-Attention (TSA). The ablation study confirms the effectiveness of TSA and ViT feature. The extensive experiments show that our proposed CLIP-TSA outperforms the existing state-of-the-art (SOTA) methods by a large margin on three commonly-used benchmark datasets in the VAD problem (UCF-Crime, ShanghaiTech Campus and XD-Violence). Our source code is available at https:// github.com/joos2010kj/CLIP-TSA. 
    more » « less
  4. Vedaldi, A. ; Bischof, H. ; Brox, T. ; Frahm, JM. (Ed.)
    The problem of action localization involves locating the action in the video, both over time and spatially in the image. The current dominant approaches use supervised learning to solve this problem. They require large amounts of annotated training data, in the form of frame-level bounding box annotations around the region of interest. In this paper, we present a new approach based on continual learning that uses feature-level predictions for self-supervision. It does not require any training annotations in terms of frame-level bounding boxes. The approach is inspired by cognitive models of visual event perception that propose a prediction-based approach to event understanding. We use a stack of LSTMs coupled with a CNN encoder, along with novel attention mechanisms, to model the events in the video and use this model to predict high-level features for the future frames. The prediction errors are used to learn the parameters of the models continuously. This self-supervised framework is not complicated as other approaches but is very effective in learning robust visual representations for both labeling and localization. It should be noted that the approach outputs in a streaming fashion, requiring only a single pass through the video, making it amenable for real-time processing. We demonstrate this on three datasets - UCF Sports, JHMDB, and THUMOS’13 and show that the proposed approach outperforms weakly-supervised and unsupervised baselines and obtains competitive performance compared to fully supervised baselines. Finally, we show that the proposed framework can generalize to egocentric videos and achieve state-of-the-art results on the unsupervised gaze prediction task. 
    more » « less
  5. Temporal action proposal generation is an essential and challenging task that aims at localizing temporal intervals containing human actions in untrimmed videos. Most of existing approaches are unable to follow the human cognitive process of understanding the video context due to lack of attention mechanism to express the concept of an action or an agent who performs the action or the interaction between the agent and the environment. Based on the action definition that a human, known as an agent, interacts with the environment and performs an action that affects the environment, we propose a contextual Agent-Environment Network. Our proposed contextual AEN involves (i) agent pathway, operating at a local level to tell about which humans/agents are acting and (ii) environment pathway operating at a global level to tell about how the agents interact with the environment. Comprehensive evaluations on 20-action THUMOS-14 and 200- action ActivityNet-1.3 datasets with different backbone networks, i.e C3D and SlowFast, show that our method robustly exhibits outperformance against state-of-the-art methods regardless of the employed backbone network. 
    more » « less