skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Learning and Optimization with Bayesian Hybrid Models
Bayesian hybrid models fuse physics-based insights with machine learning constructs to correct for systematic bias. In this paper, we compare Bayesian hybrid models against physics-based glass-box and Gaussian process black-box surrogate models. We consider ballistic firing as an illustrative case study for a Bayesian decision-making workflow. First, Bayesian calibration is performed to estimate model parameters. We then use the posterior distribution from Bayesian analysis to compute optimal firing conditions to hit a target via a single-stage stochastic program. The case study demonstrates the ability of Bayesian hybrid models to overcome systematic bias from missing physics with fewer data than the pure machine learning approach. Ultimately, we argue Bayesian hybrid models are an emerging paradigm for data-informed decision-making under parametric and epistemic uncertainty.  more » « less
Award ID(s):
1941596
PAR ID:
10212215
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2020 American Control Conference (ACC)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Yamashita, Y.; Kano, M. (Ed.)
    Bayesian hybrid models (BHMs) fuse physics-based insights with machine learning constructs to correct for systematic bias. In this paper, we demonstrate a scalable computational strategy to embed BHMs in an equation-oriented modelling environment. Thus, this paper generalizes stochastic programming, which traditionally focuses on aleatoric uncertainty (as characterized by a probability distribution for uncertainty model parameters) to also consider epistemic uncertainty, i.e., mode-form uncertainty or systematic bias as modelled by the Gaussian process in the BHM. As an illustrative example, we consider ballistic firing using a BHM that includes a simplified glass-box (i.e., equation-oriented) model that neglects air resistance and a Gaussian process model to account for systematic bias (i.e., epistemic or model-form uncertainty) induced from the model simplification. The gravity parameter and the GP hypermeters are inferred from data in a Bayesian framework, yielding a posterior distribution. A novel single-stage stochastic program formulation using the posterior samples and Gaussian quadrature rules is proposed to compute the optimal decisions (e.g., firing angle and velocity) that minimize the expected value of an objective (e.g., distance from a stationary target). PySMO is used to generate expressions for the GP prediction mean and uncertainty in Pyomo, enabling efficient optimization with gradient-based solvers such as Ipopt. A scaling study characterizes the solver time and number of iterations for up to 2,000 samples from the posterior. 
    more » « less
  2. Hybrid (i.e., grey-box) models are a powerful and flexible paradigm for predictive science and engineering. Grey-box models use data-driven constructs to incorporate unknown or computationally intractable phenomena into glass-box mechanistic models. The pioneering work of statisticians Kennedy and O’Hagan introduced a new paradigm to quantify epistemic (i.e., model-form) uncertainty. While popular in several engineering disciplines, prior work using Kennedy–O’Hagan hybrid models focuses on prediction with accurate uncertainty estimates. This work demonstrates computational strategies to deploy Bayesian hybrid models for optimization under uncertainty. Specifically, the posterior distributions of Bayesian hybrid models provide a principled uncertainty set for stochastic programming, chance-constrained optimization, or robust optimization. Through two illustrative case studies, we demonstrate the efficacy of hybrid models, composed of a structurally inadequate glass-box model and Gaussian process bias correction term, for decision-making using limited training data. From these case studies, we develop recommended best practices and explore the trade-offs between different hybrid model architectures. 
    more » « less
  3. Abstract The design of materials and identification of optimal processing parameters constitute a complex and challenging task, necessitating efficient utilization of available data. Bayesian Optimization (BO) has gained popularity in materials design due to its ability to work with minimal data. However, many BO-based frameworks predominantly rely on statistical information, in the form of input-output data, and assume black-box objective functions. In practice, designers often possess knowledge of the underlying physical laws governing a material system, rendering the objective function not entirely black-box, as some information is partially observable. In this study, we propose a physics-informed BO approach that integrates physics-infused kernels to effectively leverage both statistical and physical information in the decision-making process. We demonstrate that this method significantly improves decision-making efficiency and enables more data-efficient BO. The applicability of this approach is showcased through the design of NiTi shape memory alloys, where the optimal processing parameters are identified to maximize the transformation temperature. 
    more » « less
  4. Algorithms provide powerful tools for detecting and dissecting human bias and error. Here, we develop machine learning methods to to analyze how humans err in a particular high-stakes task: image interpretation. We leverage a unique dataset of 16,135,392 human predictions of whether a neighborhood voted for Donald Trump or Joe Biden in the 2020 US election, based on a Google Street View image. We show that by training a machine learning estimator of the Bayes optimal decision for each image, we can provide an actionable decomposition of human error into bias, variance, and noise terms, and further identify specific features (like pickup trucks) which lead humans astray. Our methods can be applied to ensure that human-in-the-loop decision-making is accurate and fair and are also applicable to black-box algorithmic systems. 
    more » « less
  5. Research exploring how to support decision-making has often used machine learning to automate or assist human decisions. We take an alternative approach for improving decision-making, using machine learning to help stakeholders surface ways to improve and make fairer decision-making processes. We created "Deliberating with AI", a web tool that enables people to create and evaluate ML models in order to examine strengths and shortcomings of past decision-making and deliberate on how to improve future decisions. We apply this tool to a context of people selection, having stakeholders---decision makers (faculty) and decision subjects (students)---use the tool to improve graduate school admission decisions. Through our case study, we demonstrate how the stakeholders used the web tool to create ML models that they used as boundary objects to deliberate over organization decision-making practices. We share insights from our study to inform future research on stakeholder-centered participatory AI design and technology for organizational decision-making. 
    more » « less