In plants, changes in cell size and shape during development fundamentally depend on the ability to synthesize and modify cell wall polysaccharides. The main classes of cell wall polysaccharides produced by terrestrial plants are cellulose, hemicelluloses, and pectins. Members of the cellulose synthase (CESA) and cellulose synthase-like (CSL) families encode glycosyltransferases that synthesize the β-1,4-linked glycan backbones of cellulose and most hemicellulosic polysaccharides that comprise plant cell walls. Cellulose microfibrils are the major load-bearing component in plant cell walls and are assembled from individual β-1,4-glucan polymers synthesized by CESA proteins that are organized into multimeric complexes called CESA complexes, in the plant plasma membrane. During distinct modes of polarized cell wall deposition, such as in the tip growth that occurs during the formation of root hairs and pollen tubes or de novo formation of cell plates during plant cytokinesis, newly synthesized cell wall polysaccharides are deposited in a restricted region of the cell. These processes require the activity of members of the CESA-like D subfamily. However, while these CSLD polysaccharide synthases are essential, the nature of the polysaccharides they synthesize has remained elusive. Here, we use a combination of genetic rescue experiments with CSLD-CESA chimeric proteins, in vitro biochemical reconstitution, and supporting computational modeling and simulation, to demonstrate that Arabidopsis (Arabidopsis thaliana) CSLD3 is a UDP-glucose-dependent β-1,4-glucan synthase that forms protein complexes displaying similar ultrastructural features to those formed by CESA6.
more »
« less
Associations between phytohormones and cellulose biosynthesis in land plants
Abstract Background Phytohormones are small molecules that regulate virtually every aspect of plant growth and development, from basic cellular processes, such as cell expansion and division, to whole plant environmental responses. While the phytohormone levels and distribution thus tell the plant how to adjust itself, the corresponding growth alterations are actuated by cell wall modification/synthesis and internal turgor. Plant cell walls are complex polysaccharide-rich extracellular matrixes that surround all plant cells. Among the cell wall components, cellulose is typically the major polysaccharide, and is the load-bearing structure of the walls. Hence, the cell wall distribution of cellulose, which is synthesized by large Cellulose Synthase protein complexes at the cell surface, directs plant growth. Scope Here, we review the relationships between key phytohormone classes and cellulose deposition in plant systems. We present the core signalling pathways associated with each phytohormone and discuss the current understanding of how these signalling pathways impact cellulose biosynthesis with a particular focus on transcriptional and post-translational regulation. Because cortical microtubules underlying the plasma membrane significantly impact the trajectories of Cellulose Synthase Complexes, we also discuss the current understanding of how phytohormone signalling impacts the cortical microtubule array. Conclusion Given the importance of cellulose deposition and phytohormone signalling in plant growth and development, one would expect that there is substantial cross-talk between these processes; however, mechanisms for many of these relationships remain unclear and should be considered as the target of future studies.
more »
« less
- Award ID(s):
- 1750359
- PAR ID:
- 10212322
- Date Published:
- Journal Name:
- Annals of Botany
- Volume:
- 126
- Issue:
- 5
- ISSN:
- 0305-7364
- Page Range / eLocation ID:
- 807 to 824
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
SUMMARY Plant cell walls are essential for defining plant growth and development, providing structural support to the main body and responding to abiotic and biotic cues. Cellulose, the main structural polymer of plant cell walls, is synthesized at the plasma membrane by cellulose synthase complexes (CSCs). The construction and transport of CSCs to and from the plasma membrane is poorly understood but is known to rely on the coordinated activity of cellulose synthase‐interactive protein 1 (CSI1), a key regulator of CSC trafficking. In this study, we found that Trs85, a TRAPPIII complex subunit, interacted with CSI1in vitro. Using functional genetics and live‐cell imaging, we have shown thattrs85‐1mutants have reduced cellulose content, stimulated CSC delivery, an increased population of static CSCs and deficient clathrin‐mediated endocytosis in the primary cell wall. Overall, our findings suggest that Trs85 has a dual role in the trafficking of CSCs, by negatively regulating the exocytosis and clathrin‐mediated endocytosis of CSCs.more » « less
-
Abstract BackgroundLike all plant cells, the guard cells of stomatal complexes are encased in cell walls that are composed of diverse, interacting networks of polysaccharide polymers. The properties of these cell walls underpin the dynamic deformations that occur in guard cells as they expand and contract to drive the opening and closing of the stomatal pore, the regulation of which is crucial for photosynthesis and water transport in plants. ScopeOur understanding of how cell wall mechanics are influenced by the nanoscale assembly of cell wall polymers in guard cell walls, how this architecture changes over stomatal development, maturation and ageing and how the cell walls of stomatal guard cells might be tuned to optimize stomatal responses to dynamic environmental stimuli is still in its infancy. ConclusionIn this review, we discuss advances in our ability to probe experimentally and to model the structure and dynamics of guard cell walls quantitatively across a range of plant species, highlighting new ideas and exciting opportunities for further research into these actively moving plant cells.more » « less
-
Abstract The common ancestor of seed plants and mosses contained homo-oligomeric cellulose synthesis complexes (CSCs) composed of identical subunits encoded by a single CELLULOSE SYNTHASE (CESA) gene. Seed plants use different CESA isoforms for primary and secondary cell wall deposition. Both primary and secondary CESAs form hetero-oligomeric CSCs that assemble and function in planta only when all the required isoforms are present. The moss Physcomitrium (Physcomitrella) patens has seven CESA genes that can be grouped into two functionally and phylogenetically distinct classes. Previously, we showed that PpCESA3 and/or PpCESA8 (class A) together with PpCESA6 and/or PpCESA7 (class B) form obligate hetero-oligomeric complexes required for normal secondary cell wall deposition. Here, we show that gametophore morphogenesis requires a member of class A, PpCESA5, and is sustained in the absence of other PpCESA isoforms. PpCESA5 also differs from the other class A PpCESAs as it is able to self-interact and does not co-immunoprecipitate with other PpCESA isoforms. These results are consistent with the hypothesis that homo-oligomeric CSCs containing only PpCESA5 subunits synthesize cellulose required for gametophore morphogenesis. Analysis of mutant phenotypes also revealed that, like secondary cell wall deposition, normal protonemal tip growth requires class B isoforms (PpCESA4 or PpCESA10), along with a class A partner (PpCESA3, PpCESA5, or PpCESA8). Thus, P. patens contains both homo-oligomeric and hetero-oligomeric CSCs.more » « less
-
Abstract BackgroundMorphological properties of tissues and organs rely on cell growth. The growth of plant cells is determined by properties of a tough outer cell wall that deforms anisotropically in response to high turgor pressure. Cortical microtubules bias the mechanical anisotropy of a cell wall by affecting the trajectories of cellulose synthases in the wall that polymerize cellulose microfibrils. The microtubule cytoskeleton is often oriented in one direction at cellular length-scales to regulate growth direction, but the means by which cellular-scale microtubule patterns emerge has not been well understood. Correlations between the microtubule orientation and tensile forces in the cell wall have often been observed. However, the plausibility of stress as a determining factor for microtubule patterning has not been directly evaluated to date. ResultsHere, we simulated how different attributes of tensile forces in the cell wall can orient and pattern the microtubule array in the cortex. We implemented a discrete model with transient microtubule behaviors influenced by local mechanical stress in order to probe the mechanisms of stress-dependent patterning. Specifically, we varied the sensitivity of four types of dynamic behaviors observed on the plus end of microtubules – growth, shrinkage, catastrophe, and rescue – to local stress. Then, we evaluated the extent and rate of microtubule alignments in a two-dimensional computational domain that reflects the structural organization of the cortical array in plant cells. ConclusionOur modeling approaches reproduced microtubule patterns observed in simple cell types and demonstrated that a spatial variation in the magnitude and anisotropy of stress can mediate mechanical feedback between the wall and of the cortical microtubule array.more » « less