skip to main content

Title: Biochemical and Genetic Analysis Identify CSLD3 as a beta-1,4-glucan Synthase that Functions during Plant Cell Wall Synthesis.
In plants, changes in cell size and shape during development fundamentally depend on the ability to synthesize and modify cell wall polysaccharides. The main classes of cell wall polysaccharides produced by terrestrial plants are cellulose, hemicelluloses, and pectins. Members of the cellulose synthase (CESA) and cellulose synthase-like (CSL) families encode glycosyltransferases that synthesize the β-1,4-linked glycan backbones of cellulose and most hemicellulosic polysaccharides that comprise plant cell walls. Cellulose microfibrils are the major load-bearing component in plant cell walls and are assembled from individual β-1,4-glucan polymers synthesized by CESA proteins that are organized into multimeric complexes called CESA complexes, in the plant plasma membrane. During distinct modes of polarized cell wall deposition, such as in the tip growth that occurs during the formation of root hairs and pollen tubes or de novo formation of cell plates during plant cytokinesis, newly synthesized cell wall polysaccharides are deposited in a restricted region of the cell. These processes require the activity of members of the CESA-like D subfamily. However, while these CSLD polysaccharide synthases are essential, the nature of the polysaccharides they synthesize has remained elusive. Here, we use a combination of genetic rescue experiments with CSLD-CESA chimeric proteins, in vitro biochemical reconstitution, more » and supporting computational modeling and simulation, to demonstrate that Arabidopsis (Arabidopsis thaliana) CSLD3 is a UDP-glucose-dependent β-1,4-glucan synthase that forms protein complexes displaying similar ultrastructural features to those formed by CESA6. « less
Authors:
Award ID(s):
1817697
Publication Date:
NSF-PAR ID:
10175836
Journal Name:
The plant cell
Volume:
32
Issue:
5
Page Range or eLocation-ID:
1749-1776
ISSN:
1040-4651
Sponsoring Org:
National Science Foundation
More Like this
  1. Cellulose, the main component of the plant cell wall, provides a stable environment for cells and is the most abundant source of biomass on Earth. Endosidin20 (ES20) is a recently identified cellulose biosynthesis inhibitor (CBI) that targets the catalytic site of plant cellulose synthase (CESA). Here, we screened over 600 ES20 analogs for their inhibitory effects on plant growth and identified nine active analogs named ES20-1 to ES20-9. Among these, Endosidin20-1 (ES20-1) had stronger inhibitory effects on plant growth and cellulose biosynthesis than ES20. Previously identified Arabidopsis thaliana cesa6 alleles that reduce plant sensitivity to ES20 also caused reduced sensitivitymore »to ES20-1 in terms of plant growth. At the biochemical level, we demonstrated that ES20-1, like ES20, directly interacts with CESA6. At the cellular level, this molecule, like ES20, induced the accumulation of cellulose synthase complexes (CSCs) at the Golgi apparatus and inhibited their secretion to the plasma membrane. Like ES20, ES20-1 likely targets the catalytic site of CESA. However, through molecular docking analysis using modeled full-length CESA6 structure, we found that both ES20 and ES20-1 might have another target site at the transmembrane regions of CESA6. Besides ES20, other CBIs such as Isoxaben, C17 and Flupoxam are widely used tools to dissect the mechanism of cellulose biosynthesis and are valuable resources for the development of herbicide. Multiple CESA mutants which are insensitive to these CBIs have been identified. Here, based on mutant genetic analysis and molecular docking analysis, we have identified the potential target sites of these CBIs on modeled CESA structure. Some bacteria also produce cellulose, and both ES20 and ES20-1 inhibited bacterial cellulose biosynthesis. Therefore, we conclude that ES20-1 is a more potent analog of ES20 that inhibits intrinsic cellulose biosynthesis in plants and both ES20 and ES20-1 show inhibitory effect in bacterial growth and cellulose synthesis, making them excellent tools for exploring the mechanisms of cellulose biosynthesis across kingdoms.« less
  2. The plant’s recalcitrant cell wall is composed of numerous polysaccharides, including cellulose, hemicellulose, and pectin. The most abundant hemicellulose in dicot cell walls is xyloglucan, which consists of a β-(1- > 4) glucan backbone with α-(1- > 6) xylosylation producing an XXGG or XXXG pattern. Xylose residues of xyloglucan are branched further with different patterns of arabinose, fucose, galactose, and acetylation that varies between species. Although xyloglucan research in other species lag behind Arabidopsis thaliana , significant advances have been made into the agriculturally relevant species Oryza sativa and Solanum lycopersicum , which can be considered model organisms for XXGG type xyloglucan. In thismore »review, we will present what is currently known about xyloglucan biosynthesis in A. thaliana , O. sativa , and S. lycopersicum and discuss the recent advances in the characterization of the glycosyltransferases involved in this complex process and their organization in the Golgi.« less
  3. Abstract Background Phytohormones are small molecules that regulate virtually every aspect of plant growth and development, from basic cellular processes, such as cell expansion and division, to whole plant environmental responses. While the phytohormone levels and distribution thus tell the plant how to adjust itself, the corresponding growth alterations are actuated by cell wall modification/synthesis and internal turgor. Plant cell walls are complex polysaccharide-rich extracellular matrixes that surround all plant cells. Among the cell wall components, cellulose is typically the major polysaccharide, and is the load-bearing structure of the walls. Hence, the cell wall distribution of cellulose, which is synthesizedmore »by large Cellulose Synthase protein complexes at the cell surface, directs plant growth. Scope Here, we review the relationships between key phytohormone classes and cellulose deposition in plant systems. We present the core signalling pathways associated with each phytohormone and discuss the current understanding of how these signalling pathways impact cellulose biosynthesis with a particular focus on transcriptional and post-translational regulation. Because cortical microtubules underlying the plasma membrane significantly impact the trajectories of Cellulose Synthase Complexes, we also discuss the current understanding of how phytohormone signalling impacts the cortical microtubule array. Conclusion Given the importance of cellulose deposition and phytohormone signalling in plant growth and development, one would expect that there is substantial cross-talk between these processes; however, mechanisms for many of these relationships remain unclear and should be considered as the target of future studies.« less
  4. Cytokinesis in land plants involves the formation of a cell plate that develops into the new cell wall. Callose, a β-1,3 glucan accumulates at later stages of cell plate development presumably to stabilize this delicate membrane network during expansion. Cytokinetic callose is considered specific to multicellular plant species, as it has not been detected in unicellular algae. Here we present callose at the cytokinesis junction of the unicellular charophyte, P. margaritaceum. Callose deposition at the division plane of P. margaritaceum showed distinct, spatiotemporal patterns likely representing distinct roles of this polymer in cytokinesis. Pharmacological inhibition by Endosidin 7 resulted inmore »cytokinesis defects, consistent with the essential role for this polymer in P. margaritaceum cell division. Cell wall deposition at the isthmus zone was also affected by the absence of callose, demonstrating the dynamic nature of new wall assembly in P. margaritaceum. The identification of candidate callose synthase genes provides molecular evidence for callose biosynthesis in P. margaritaceum. The evolutionary implications of cytokinetic callose in this unicellular Zygnematopycean alga is discussed in the context of the conquest of land by plants.« less
  5. Abstract Background Plants are naturally associated with root microbiota, which are microbial communities influential to host fitness. Thus, it is important to understand how plants control root microbiota. Epigenetic factors regulate the readouts of genetic information and consequently many essential biological processes. However, it has been elusive whether RNA-directed DNA methylation (RdDM) affects root microbiota assembly. Results By applying 16S rRNA gene sequencing, we investigated root microbiota of Arabidopsis mutants defective in the canonical RdDM pathway, including dcl234 that harbors triple mutation in the Dicer-like proteins DCL3, DCL2, and DCL4, which produce small RNAs for RdDM. Alpha diversity analysis showedmore »reductions in microbe richness from the soil to roots, reflecting the selectivity of plants on root-associated bacteria. The dcl234 triple mutation significantly decreases the levels of Aeromonadaceae and Pseudomonadaceae , while it increases the abundance of many other bacteria families in the root microbiota. However, mutants of the other examined key players in the canonical RdDM pathway showed similar microbiota as Col-0, indicating that the DCL proteins affect root microbiota in an RdDM-independent manner. Subsequently gene analysis by shotgun sequencing of root microbiome indicated a selective pressure on microbial resistance to plant defense in the dcl234 mutant. Consistent with the altered plant-microbe interactions, dcl234 displayed altered characters, including the mRNA and sRNA transcriptomes that jointly highlighted altered cell wall organization and up-regulated defense, the decreased cellulose and callose deposition in root xylem, and the restructured profile of root exudates that supported the alterations in gene expression and cell wall modifications. Conclusion Our findings demonstrate an important role of the DCL proteins in influencing root microbiota through integrated regulation of plant defense, cell wall compositions, and root exudates. Our results also demonstrate that the canonical RdDM is dispensable for Arabidopsis root microbiota. These findings not only establish a connection between root microbiota and plant epigenetic factors but also highlight the complexity of plant regulation of root microbiota.« less