skip to main content


Title: Constraining the distance to the North Polar Spur with Gaia DR2
ABSTRACT The North Polar Spur (NPS) is one of the largest structures observed in the Milky Way in both the radio and soft X-rays. While several predictions have been made regarding the origin of the NPS, modelling the structure is difficult without precise distance constraints. In this paper, we determine accurate distances to the southern terminus of the NPS and towards latitudes ranging up to 55°. First, we fit for the distance and extinction to stars towards the NPS using optical and near-infrared photometry and Gaia Data Release 2 astrometry. We model these per-star distance–extinction estimates as being caused by dust screens at unknown distances, which we fit for using a nested sampling algorithm. We then compare the extinction to the Spur derived from our 3D dust modelling with integrated independent measures from XMM–Newton X-ray absorption and H i column density measures. We find that we can account for nearly 100 per cent of the total column density of the NPS as lying within 140 pc for latitudes >26° and within 700 pc for latitudes <11°. Based on the results, we conclude that the NPS is not associated with the Galactic Centre or the Fermi bubbles. Instead, it is likely associated, especially at higher latitudes, with the Scorpius–Centaurus association.  more » « less
Award ID(s):
1739657 1908419
NSF-PAR ID:
10212408
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
498
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
5863 to 5872
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We dendrogram the Leike et al. 3D dust map, leveraging its ∼1 pc spatial resolution to produce a uniform catalog of molecular clouds in the solar neighborhood. Using accurate distances, we measure the properties of 65 clouds in true 3D space, eliminating much of the uncertainty in mass, size, and density. Clouds in the catalog contain a total of 1.1 × 105M, span distances of 116−440 pc, and include a dozen well-studied clouds in the literature. In addition to deriving cloud properties in 3D volume density space, we create 2D dust extinction maps from the 3D data by projecting the 3D clouds onto a 2D “Sky” view. We measure the properties of the 2D clouds separately from the 3D clouds. We compare the scaling relation between the masses and sizes of clouds following Larson. We find that our 2D projected mass–size relation,Mr2.1, agrees with Larson's Third Relation, but our 3D derived properties lead to a scaling relation of about one order larger:Mr2.9. Validating predictions from theory and numerical simulations, our results indicate that the mass–size relation is sensitive to whether column or volume density is used to define clouds, since mass scales with area in 2D (Mr2) and with volume in 3D (Mr3). Our results imply a roughly constant column and volume density in 2D and 3D, respectively, for molecular clouds, as would be expected for clouds where the lower density, larger volume-filling gas dominates the cloud mass budget.

     
    more » « less
  2. Context. Filamentary structures in nearby molecular clouds have been found to exhibit a characteristic width of 0.1 pc, as observed in dust emission. Understanding the origin of this universal width has become a topic of central importance in the study of molecular cloud structure and the early stages of star formation. Aims. We investigate how the recovered widths of filaments depend on the distance from the observer by using previously published results from the Herschel Gould Belt Survey. Methods. We obtained updated estimates on the distances to nearby molecular clouds observed with Herschel by using recent results based on 3D dust extinction mapping and Gaia . We examined the widths of filaments from individual clouds separately, as opposed to treating them as a single population. We used these per-cloud filament widths to search for signs of variation amongst the clouds of the previously published study. Results. We find a significant dependence of the mean per-cloud filament width with distance. The distribution of mean filament widths for nearby clouds is incompatible with that of farther away clouds. The mean per-cloud widths scale with distance approximately as 4−5 times the beam size. We examine the effects of resolution by performing a convergence study of a filament profile in the Herschel image of the Taurus Molecular Cloud. We find that resolution can severely affect the shapes of radial profiles over the observed range of distances. Conclusions. We conclude that the data are inconsistent with 0.1 pc being the universal characteristic width of filaments. 
    more » « less
  3. ABSTRACT

    The early-type star gamma Cas illuminates the reflection nebulae IC 59 and IC 63, creating two photodissociation regions (PDRs). Uncertainties about the distances to the nebulae and the resulting uncertainty about the density of the radiation fields incident on their surfaces have hampered the study of these PDRs during the past three decades. We employed far-ultraviolet (UV) – optical nebula – star colour differences of dust-scattered light to infer the locations of the nebulae relative to the plane of the sky containing gamma Cas, finding IC 63 to be positioned behind the star and IC 59 in front of the star. To obtain the linear distances of the nebulae relative to gamma Cas, we fit far-infrared archival Herschel flux data for IC 59 and IC 63 with modified blackbody curves and relate the resulting dust temperatures with the luminosity of gamma Cas, yielding approximate distances of 4.15 pc for IC 59 and 2.3 pc for IC 63. With these distances, using updated far-UV flux data in the 6–13.6 eV range for gamma Cas with two recent determinations of the interstellar extinction for gamma Cas, we estimate that the far-UV radiation density at the surface of IC 63 takes on values of G0 = 58 or G0 = 38 with respective values for E(B − V) for gamma Cas of 0.08 and 0.04 mag. This is a substantial reduction from the range 150 ≤ G0 ≤ 650 used for IC 63 during the past three decades. The corresponding, even lower new values for IC 59 are G0 = 18 and G0 = 12.

     
    more » « less
  4. ABSTRACT The current generation of (sub)mm-telescopes has allowed molecular line emission to become a major tool for studying the physical, kinematic, and chemical properties of extragalactic systems, yet exploiting these observations requires a detailed understanding of where emission lines originate within the Milky Way. In this paper, we present 60 arcsec (∼3 pc) resolution observations of many 3 mm band molecular lines across a large map of the W49 massive star-forming region (∼100 pc × 100 pc at 11 kpc), which were taken as part of the ‘LEGO’ IRAM-30m large project. We find that the spatial extent or brightness of the molecular line transitions are not well correlated with their critical densities, highlighting abundance and optical depth must be considered when estimating line emission characteristics. We explore how the total emission and emission efficiency (i.e. line brightness per H2 column density) of the line emission vary as a function of molecular hydrogen column density and dust temperature. We find that there is not a single region of this parameter space responsible for the brightest and most efficiently emitting gas for all species. For example, we find that the HCN transition shows high emission efficiency at high column density (1022 cm−2) and moderate temperatures (35 K), whilst e.g. N2H+ emits most efficiently towards lower temperatures (1022 cm−2; <20 K). We determine $X_{\mathrm{CO} (1-0)} \sim 0.3 \times 10^{20} \, \mathrm{cm^{-2}\, (K\, km\, s^{-1})^{-1}}$, and $\alpha _{\mathrm{HCN} (1-0)} \sim 30\, \mathrm{M_\odot \, (K\, km\, s^{-1}\, pc^2)^{-1}}$, which both differ significantly from the commonly adopted values. In all, these results suggest caution should be taken when interpreting molecular line emission. 
    more » « less
  5. Accurate distances to local molecular clouds are critical for understanding the star and planet formation process, yet distance measurements are often obtained inhomogeneously on a cloud-by-cloud basis. We have recently developed a method that combines stellar photometric data with Gaia DR2 parallax measurements in a Bayesian framework to infer the distances of nearby dust clouds to a typical accuracy of ∼5%. After refining the technique to target lower latitudes and incorporating deep optical data from DECam in the southern Galactic plane, we have derived a catalog of distances to molecular clouds in Reipurth (2008, Star Formation Handbook, Vols. I and II) which contains a large fraction of the molecular material in the solar neighborhood. Comparison with distances derived from maser parallax measurements towards the same clouds shows our method produces consistent distances with ≲10% scatter for clouds across our entire distance spectrum (150 pc−2.5 kpc). We hope this catalog of homogeneous distances will serve as a baseline for future work. 
    more » « less