skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The width of Herschel filaments varies with distance
Context. Filamentary structures in nearby molecular clouds have been found to exhibit a characteristic width of 0.1 pc, as observed in dust emission. Understanding the origin of this universal width has become a topic of central importance in the study of molecular cloud structure and the early stages of star formation. Aims. We investigate how the recovered widths of filaments depend on the distance from the observer by using previously published results from the Herschel Gould Belt Survey. Methods. We obtained updated estimates on the distances to nearby molecular clouds observed with Herschel by using recent results based on 3D dust extinction mapping and Gaia . We examined the widths of filaments from individual clouds separately, as opposed to treating them as a single population. We used these per-cloud filament widths to search for signs of variation amongst the clouds of the previously published study. Results. We find a significant dependence of the mean per-cloud filament width with distance. The distribution of mean filament widths for nearby clouds is incompatible with that of farther away clouds. The mean per-cloud widths scale with distance approximately as 4−5 times the beam size. We examine the effects of resolution by performing a convergence study of a filament profile in the Herschel image of the Taurus Molecular Cloud. We find that resolution can severely affect the shapes of radial profiles over the observed range of distances. Conclusions. We conclude that the data are inconsistent with 0.1 pc being the universal characteristic width of filaments.  more » « less
Award ID(s):
2106607
PAR ID:
10329776
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
657
ISSN:
0004-6361
Page Range / eLocation ID:
L13
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We characterize the kinematic and magnetic properties of H i filaments located in a high Galactic latitude region (165° < α < 195° and 12° < δ < 24°). We extract three-dimensional filamentary structures using fil3d from the Galactic Arecibo L-Band Feed Array H i (GALFA-H i) survey 21-cm emission data. Our algorithm identifies coherent emission structures in neighbouring velocity channels. Based on the mean velocity, we identify a population of local and intermediate velocity cloud (IVC) filaments. We find the orientations of the local (but not the IVC) H i filaments are aligned with the magnetic field orientations inferred from Planck 353 GHz polarized dust emission. We analyse position–velocity diagrams of the velocity-coherent filaments, and find that only 15 per cent of filaments demonstrate significant major-axis velocity gradients with a median magnitude of 0.5 km s−1 pc−1, assuming a fiducial filament distance of 100 pc. We conclude that the typical diffuse H i filament does not exhibit a simple velocity gradient. The reported filament properties constrain future theoretical models of filament formation. 
    more » « less
  2. Accurate distances to local molecular clouds are critical for understanding the star and planet formation process, yet distance measurements are often obtained inhomogeneously on a cloud-by-cloud basis. We have recently developed a method that combines stellar photometric data with Gaia DR2 parallax measurements in a Bayesian framework to infer the distances of nearby dust clouds to a typical accuracy of ∼5%. After refining the technique to target lower latitudes and incorporating deep optical data from DECam in the southern Galactic plane, we have derived a catalog of distances to molecular clouds in Reipurth (2008, Star Formation Handbook, Vols. I and II) which contains a large fraction of the molecular material in the solar neighborhood. Comparison with distances derived from maser parallax measurements towards the same clouds shows our method produces consistent distances with ≲10% scatter for clouds across our entire distance spectrum (150 pc−2.5 kpc). We hope this catalog of homogeneous distances will serve as a baseline for future work. 
    more » « less
  3. ABSTRACT The interstellar medium is threaded by a hierarchy of filaments from large scales (∼100 pc) to small scales (∼0.1 pc). The masses and lengths of these nested structures may reveal important constraints for cloud formation and evolution, but it is difficult to investigate from an evolutionary perspective using single observations. In this work, we extract simulated molecular clouds from the ‘Cloud Factory’ galactic-scale ISM suite in combination with 3D Monte Carlo radiative transfer code polaris to investigate how filamentary structure evolves over time. We produce synthetic dust continuum observations in three regions with a series of snapshots and use the filfinder algorithm to identify filaments in the dust derived column density maps. When the synthetic filaments mass and length are plotted on an mass–length (M–L) plot, we see a scaling relation of L ∝ M0.45 similar to that seen in observations, and find that the filaments are thermally supercritical. Projection effects systematically affect the masses and lengths measured for the filaments, and are particularly severe in crowded regions. In the filament M–L diagram we identify three main evolutionary mechanisms: accretion, segmentation, and dispersal. In particular we find that the filaments typically evolve from smaller to larger masses in the observational M–L plane, indicating the dominant role of accretion in filament evolution. Moreover, we find a potential correlation between line mass and filament growth rate. Once filaments are actively star forming they then segment into smaller sections, or are dispersed by internal or external forces. 
    more » « less
  4. ABSTRACT In this paper, we study the filamentary substructure of 3.3 $$\mu$$m polycyclic aromatic hydrocarbon (PAH) emission from JWST/NIRCam observations in the base of the M 82 star-burst driven wind. We identify plume-like substructure within the PAH emission with widths of $$\sim$$50 pc. Several of those plumes extend to the edge of the field-of-view, and thus are at least 200–300 pc in length. In this region of the outflow, the vast majority ($$\sim$$70 per cent) of PAH emission is associated with the plumes. We show that those structures contain smaller scale ‘clouds’ with widths that are $$\sim$$5–15 pc, and they are morphologically similar to the results of ‘cloud-crushing’ simulations. We estimate the cloud-crushing time-scales of $$\sim$$0.5–3 Myr, depending on assumptions. We show this time-scale is consistent with a picture in which these observed PAH clouds survived break-out from the disc rather than being destroyed by the hot wind. The PAH emission in both the mid-plane and the outflow is shown to tightly correlate with that of Pa $$\alpha$$ emission (from Hubble Space Telescope data), at the scale of both plumes and clouds, though the ratio of PAH-to-Pa $$\alpha$$ increases at further distances from the mid-plane. Finally, we show that the outflow PAH emission reaches a local minimum in regions of the M 82 wind that are bright in X-ray emission. Our results are consistent cold gas in galactic outflows being launched via hierarchically structured plumes, and those small scale clouds are more likely to survive the wind environment when collected into the larger plume structure. 
    more » « less
  5. ABSTRACT Filamentary structures have been found nearly ubiquitously in molecular clouds and yet their formation and evolution is still poorly understood. We examine a segment of Taurus Molecular Cloud 1 (TMC-1) that appears as a single, narrow filament in continuum emission from dust. We use the Regularized Optimization for Hyper-Spectral Analysis (ROHSA), a Gaussian decomposition algorithm that enforces spatial coherence when fitting multiple velocity components simultaneously over a data cube. We analyse HC5N (9–8) line emission as part of the Green Bank Ammonia Survey and identify three velocity-coherent components with ROHSA. The two brightest components extend the length of the filament, while the third component is fainter and clumpier. The brightest component has a prominent transverse velocity gradient of 2.7 ± 0.1 km s−1 pc−1 that we show to be indicative of gravitationally induced inflow. In the second component, we identify regularly spaced emission peaks along its length. We show that the local minima between pairs of adjacent HC5N peaks line up closely with submillimetre continuum emission peaks, which we argue is evidence for fragmentation along the spine of TMC-1. While coherent velocity components have been described as separate physical structures in other star-forming filaments, we argue that the two bright components identified in HC5N emission in TMC-1 are tracing two layers in one filament: a lower density outer layer whose material is flowing under gravity towards the higher density inner layer of the filament. 
    more » « less