skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Black-Hole Models in Loop Quantum Gravity
Dynamical black-hole scenarios have been developed in loop quantum gravity in various ways, combining results from mini and midisuperspace models. In the past, the underlying geometry of space-time has often been expressed in terms of line elements with metric components that differ from the classical solutions of general relativity, motivated by modified equations of motion and constraints. However, recent results have shown by explicit calculations that most of these constructions violate general covariance and slicing independence. The proposed line elements and black-hole models are therefore ruled out. The only known possibility to escape this sentence is to derive not only modified metric components but also a new space-time structure which is covariant in a generalized sense. Formally, such a derivation is made available by an analysis of the constraints of canonical gravity, which generate deformations of hypersurfaces in space-time, or generalized versions if the constraints are consistently modified. A generic consequence of consistent modifications in effective theories suggested by loop quantum gravity is signature change at high density. Signature change is an important ingredient in long-term models of black holes that aim to determine what might happen after a black hole has evaporated. Because this effect changes the causal structure of space-time, it has crucial implications for black-hole models that have been missed in several older constructions, for instance in models based on bouncing black-hole interiors. Such models are ruled out by signature change even if their underlying space-times are made consistent using generalized covariance. The causal nature of signature change brings in a new internal consistency condition, given by the requirement of deterministic behavior at low curvature. Even a causally disconnected interior transition, opening back up into the former exterior as some kind of astrophysical white hole, is then ruled out. New versions consistent with both generalized covariance and low-curvature determinism are introduced here, showing a remarkable similarity with models developed in other approaches, such as the final-state proposal or the no-transition principle obtained from the gauge-gravity correspondence.  more » « less
Award ID(s):
1912168
PAR ID:
10212452
Author(s) / Creator(s):
Date Published:
Journal Name:
Universe
Volume:
6
Issue:
8
ISSN:
2218-1997
Page Range / eLocation ID:
125
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A complete canonical formulation of general covariance makes it possible to construct new modified theories of gravity that are not of higher-curvature form, as shown here in a spherically symmetric setting. The usual uniqueness theorems are evaded by using a crucial and novel ingredient, allowing for fundamental fields of gravity distinct from an emergent space-time metric that provides a geometrical structure to all solutions. As specific examples, there are new expansion-shear couplings in cosmological models, a form of modified Newtonian dynamics can appear in a space-time covariant theory without introducing extra fields, and related effects help to make effective models of canonical quantum gravity fully consistent with general covariance. 
    more » « less
  2. In canonical gravity, general covariance is implemented by hypersurface-deformation symmetries on thephase space. The different versions of hypersurface deformations required for full covariance have complicated interplays with one another, governed by non-Abelian brackets with structure functions. For spherically symmetric space-times, it is possible to identify a certain Abelian substructure within general hypersurface deformations, which suggests a simplified realization as a Lie algebra. The generators of this substructure can be quantized more easily than full hypersurface deformations, but the symmetries they generate do not directly correspond to hypersurface deformations. The availability of consistent quantizations therefore does not guarantee general covariance or a meaningful quantum notion thereof. In addition to placing the Abelian substructure within the full context of spherically symmetric hypersurface deformation, this paper points out several subtleties relevant for attempted applications in quantized space-time structures. In particular, it follows that recent constructions by Gambini, Olmedo, and Pullin in an Abelianized setting fail to address the covariance crisis of loop quantum gravity. 
    more » « less
  3. Bambi, Cosimo; Modesto, Leonardo; Shapiro, Ilya (Ed.)
    We summarize our work on spherically symmetric midi-superspaces in loop quantum gravity. Our approach is based on using inhomogeneous slicings that may penetrate the horizon in case there is one and on a redefinition of the constraints so the Hamiltonian has an Abelian algebra with itself. We discuss basic and improved quantizations as is done in loop quantum cosmology. We discuss the use of parameterized Dirac observables to define operators associated with kinematical variables in the physical space of states, as a first step to introduce an operator associated with the space-time metric. We analyze the elimination of singularities and how they are replaced by extensions of the space-times. We discuss the charged case and potential observational consequences in quasinormal modes. We also analyze the covariance of the approach. Finally, we comment on other recent approaches of quantum black holes, including mini-superspaces motivated by loop quantum gravity. 
    more » « less
  4. Vacuum spherically symmetric loop quantum gravity in the midi-superspace approximation using inhomogeneous horizon-penetrating slices has been studied for a decade, and it has been noted that the singularity is eliminated. It is replaced by a region of high curvature and potentially large quantum fluctuations. It was recently pointed out that the effective semiclassical metric implies the existence of a shell of matter which violates energy conditions in regions where the curvature is largest. Here, we propose an alternative way of treating the problem that is free from the shells. The ambiguity in the treatment is related with the existence of new observables in the quantum theory that characterize the area excitations, and how the counterpart of diffeomorphisms in the discrete quantum theory is mapped to the continuum semiclassical picture. The resulting spacetime in the high curvature region inside the horizon is approximated by a metric of the type of the Simpson–Visser wormhole and it connects the black hole interior to a white hole in a smooth manner. 
    more » « less
  5. Abstract The recently proposed theory of “Asymptotically Free Mimetic Gravity” is extended to the general non‐homogeneous, spatially non‐flat case. We present a modified theory of gravity which is free of higher derivatives of the metric. In this theory asymptotic freedom of gravity implies the existence of a minimal black hole with vanishing Hawking temperature. Introducing a spatial curvature dependent potential, we moreover obtain non‐singular, bouncing modifications of spatially non‐flat Friedmann and Bianchi universes. 
    more » « less