skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Emergent modified gravity
A complete canonical formulation of general covariance makes it possible to construct new modified theories of gravity that are not of higher-curvature form, as shown here in a spherically symmetric setting. The usual uniqueness theorems are evaded by using a crucial and novel ingredient, allowing for fundamental fields of gravity distinct from an emergent space-time metric that provides a geometrical structure to all solutions. As specific examples, there are new expansion-shear couplings in cosmological models, a form of modified Newtonian dynamics can appear in a space-time covariant theory without introducing extra fields, and related effects help to make effective models of canonical quantum gravity fully consistent with general covariance.  more » « less
Award ID(s):
2206591
PAR ID:
10499753
Author(s) / Creator(s):
;
Publisher / Repository:
IOP/SISSA
Date Published:
Journal Name:
Classical and Quantum Gravity
Volume:
41
Issue:
9
ISSN:
0264-9381
Page Range / eLocation ID:
095008
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Dynamical black-hole scenarios have been developed in loop quantum gravity in various ways, combining results from mini and midisuperspace models. In the past, the underlying geometry of space-time has often been expressed in terms of line elements with metric components that differ from the classical solutions of general relativity, motivated by modified equations of motion and constraints. However, recent results have shown by explicit calculations that most of these constructions violate general covariance and slicing independence. The proposed line elements and black-hole models are therefore ruled out. The only known possibility to escape this sentence is to derive not only modified metric components but also a new space-time structure which is covariant in a generalized sense. Formally, such a derivation is made available by an analysis of the constraints of canonical gravity, which generate deformations of hypersurfaces in space-time, or generalized versions if the constraints are consistently modified. A generic consequence of consistent modifications in effective theories suggested by loop quantum gravity is signature change at high density. Signature change is an important ingredient in long-term models of black holes that aim to determine what might happen after a black hole has evaporated. Because this effect changes the causal structure of space-time, it has crucial implications for black-hole models that have been missed in several older constructions, for instance in models based on bouncing black-hole interiors. Such models are ruled out by signature change even if their underlying space-times are made consistent using generalized covariance. The causal nature of signature change brings in a new internal consistency condition, given by the requirement of deterministic behavior at low curvature. Even a causally disconnected interior transition, opening back up into the former exterior as some kind of astrophysical white hole, is then ruled out. New versions consistent with both generalized covariance and low-curvature determinism are introduced here, showing a remarkable similarity with models developed in other approaches, such as the final-state proposal or the no-transition principle obtained from the gauge-gravity correspondence. 
    more » « less
  2. In canonical gravity, general covariance is implemented by hypersurface-deformation symmetries on thephase space. The different versions of hypersurface deformations required for full covariance have complicated interplays with one another, governed by non-Abelian brackets with structure functions. For spherically symmetric space-times, it is possible to identify a certain Abelian substructure within general hypersurface deformations, which suggests a simplified realization as a Lie algebra. The generators of this substructure can be quantized more easily than full hypersurface deformations, but the symmetries they generate do not directly correspond to hypersurface deformations. The availability of consistent quantizations therefore does not guarantee general covariance or a meaningful quantum notion thereof. In addition to placing the Abelian substructure within the full context of spherically symmetric hypersurface deformation, this paper points out several subtleties relevant for attempted applications in quantized space-time structures. In particular, it follows that recent constructions by Gambini, Olmedo, and Pullin in an Abelianized setting fail to address the covariance crisis of loop quantum gravity. 
    more » « less
  3. Standard cosmological data analyses typically constrain simple phenomenological dark-energy parameters, for example the present-day value of the equation of state parameter, w0, and its variation with scale factor, wa. However, results from such an analysis cannot easily indicate the presence of modified gravity. Even if general relativity does not hold, experimental data could still be fit sufficiently well by a phenomenological w0waCDM, unmodified-gravity model. Hence, it would be very useful to know if there are generic signatures of modified gravity in standard analyses. Here we present, for the first time to our knowledge, a quantitative mapping showing how modified gravity models look when (mis)interpreted within the standard unmodified-gravity analysis. Scanning through a broad space of modified-gravity (Horndeski) models, and assuming a near-future survey consisting of CMB, BAO, and SNIa observations, we report values of the best-fit set of cosmological parameters including (w0, wa) that would be inferred if modified gravity were at work. We find that modified gravity models that can masquerade as standard gravity lead to very specific biases in standard-parameter spaces. We also comment on implications for measurements of the amplitude of mass fluctuations described by the parameter S8. 
    more » « less
  4. Background independence is often emphasized as an important property of a quantum theory of gravity that takes seriously the geometrical nature of general relativity. In a background-independent formulation, quantum gravity should determine not only the dynamics of space–time but also its geometry, which may have equally important implications for claims of potential physical observations. One of the leading candidates for background-independent quantum gravity is loop quantum gravity. By combining and interpreting several recent results, it is shown here how the canonical nature of this theory makes it possible to perform a complete space–time analysis in various models that have been proposed in this setting. In spite of the background-independent starting point, all these models turned out to be non-geometrical and even inconsistent to varying degrees, unless strong modifications of Riemannian geometry are taken into account. This outcome leads to several implications for potential observations as well as lessons for other background-independent approaches. 
    more » « less
  5. Abstract We analyze consequences of trying to replace dark matter and dark energy with models of stochastic spacetime. In particular, we analyze the model put forth by ref. [1], in which it is claimed that “post-quantum classical gravity” (PQCG), a stochastic theory of gravity, leads to modified Newtonian dynamics (MOND) behavior on galactic scales that reproduces galactic rotation curves, and leads to dark energy. We show that this analysis has four basic problems: (i) the equations of PQCG do not lead to a new large scale force of the form claimed in the paper, (ii) the form claimed is not of the MONDian form anyhow and so does not correspond to observed galactic dynamics, (iii) the spectrum of fluctuations is very different from observations, and (iv) we also identify some theoretical problems in these models. 
    more » « less