Despite significant efforts in the study of cardiovascular diseases (CVDs), they persist as the leading cause of mortality worldwide. Considerable research into human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) has highlighted their immense potential in the development of in vitro human cardiac tissues for broad mechanistic, therapeutic, and patient-specific disease modeling studies in the pursuit of CVD research. However, the relatively immature state of hPSC-CMs remains an obstacle in enhancing clinical relevance ofengineered cardiac tissue models. In this study, we describe development of a microfluidic platform for 3D modeling of cardiac tissues, derived from both rat cells and hPSC-CMs, to better recapitulate the native myocardium through co-culture with interstitial cells (specifically cardiac fibroblasts), biomimetic collagen hydrogel encapsulation, and induction of highly anisotropic tissue architecture. The presented platform is precisely engineered through incorporation of surface topography in the form of staggered microposts to enable long-term culture and maturation of cardiac cells, resulting in formation of physiologically relevant cardiac tissues with anisotropy that mimics native myocardium. After two weeks of culture, hPSC-derived cardiac tissues exhibited well-defined sarcomeric striations, highly synchronous contractions, and upregulation of several maturation genes, including HCN1, KCNQ1, CAV1.2, CAV3.1, PLN, and RYR2. These findings demonstrate the ability of the proposed engineered platform to mature animal- as well as human stem cell-derived cardiac tissues over an extended period of culture, providing a novel microfluidic chip with the capability for cardiac disease modeling and therapeutic testing.
more »
« less
Contractile work directly modulates mitochondrial protein levels in human engineered heart tissues
Engineered heart tissues (EHTs) have emerged as a robust in vitro model to study cardiac physiology. Although biomimetic culture environments have been developed to better approximate in vivo conditions, currently available methods do not permit full recapitulation of the four phases of the cardiac cycle. We have developed a bioreactor which allows EHTs to undergo cyclic loading sequences that mimic in vivo work loops. EHTs cultured under these working conditions exhibited enhanced concentric contractions but similar isometric contractions compared with EHTs cultured isometrically. EHTs that were allowed to shorten cyclically in culture had increased capacity for contractile work when tested acutely. Increased work production was correlated with higher levels of mitochondrial proteins and mitochondrial biogenesis; this effect was eliminated when tissues were cyclically shortened in the presence of a myosin ATPase inhibitor. Leveraging our novel in vitro method to precisely apply mechanical loads in culture, we grew EHTs under two loading regimes prescribing the same work output but with different associated afterloads. These groups showed no difference in mitochondrial protein expression. In loading regimes with the same afterload but different work output, tissues subjected to higher work demand exhibited elevated levels of mitochondrial protein. Our findings suggest that regulation of mitochondrial mass in cultured human EHTs is potently modulated by the mechanical work the tissue is permitted to perform in culture, presumably communicated through ATP demand. Precise application of mechanical loads to engineered heart tissues in culture represents a novel in vitro method for studying physiological and pathological cardiac adaptation. NEW & NOTEWORTHY In this work, we present a novel bioreactor that allows for active length control of engineered heart tissues during extended tissue culture. Specific length transients were designed so that engineered heart tissues generated complete cardiac work loops. Chronic culture with various work loops suggests that mitochondrial mass and biogenesis are directly regulated by work output.
more »
« less
- Award ID(s):
- 1653160
- PAR ID:
- 10212495
- Date Published:
- Journal Name:
- American Journal of Physiology-Heart and Circulatory Physiology
- Volume:
- 318
- Issue:
- 6
- ISSN:
- 0363-6135
- Page Range / eLocation ID:
- H1516 to H1524
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Cardiac tissues are able to adjust their contractile behavior to adapt to the local mechanical environment. Nonuniformity of the native tissue mechanical properties contributes to the development of heart dysfunctions, yet the current in vitro cardiac tissue models often fail to recapitulate the mechanical nonuniformity. To address this issue, a 3D cardiac microtissue model is developed with engineered mechanical nonuniformity, enabled by 3D‐printed hybrid matrices composed of fibers with different diameters. When escalating the complexity of tissue mechanical environments, cardiac microtissues start to develop maladaptive hypercontractile phenotypes, demonstrated in both contractile motion analysis and force‐power analysis. This novel hybrid system could potentially facilitate the establishment of “pathologically‐inspired” cardiac microtissue models for deeper understanding of heart pathology due to nonuniformity of the tissue mechanical environment.more » « less
-
Introduction: Myocardial fibrosis and dysfunction is one of the major cardiac complications of long-term diabetes. Prolonged hyperglycemia is known to induce myocardial dysfunction often leading up to heart failure. Hypothesis: The objective of this study was to investigate the cardioprotective effect of glycyrrhizin (GLC) on myocardial damage in engineered in-vitro human cardiac tissues. Engineered 3D tissue chips present an ideal microenvironment via therapeutically relevant interfaces to study molecular- and cellular-level events and mimic human-specific disease states, and identify new therapeutic targets in vitro. Methods: AC16 human cardiomyocyte cells were used to 3D bioprint cardiac tissue chips based on prior published work. In our study, the 3D bioprinted cardiac tissue chips (CTC) were cultured using normo- (5mM) and hyper-glycemic (25mM) conditions for up to 48 hrs. For the GLC treatment group, a subset of CTC cultured using hyperglycemic conditions were treated with 50 mM of GLC for 24 hours. Results: CTC cultured under hyperglycemic conditions demonstrated altered levels of connexin-43 (CX43) and Troponin-I implying cardiomyocyte injury. Exposure to hyperglycemia revealed changes in epigenetic markers: histone methylation marker (H3K9me)-1, Sirtuin-1, and Histone Deacetylase (HDAC)-2 as well as in inflammatory and stress related mediators such as heat shock protein (HSP)-60, receptor for advanced glycation end products (RAGE), toll like receptor (TLR)-4, high mobility group box (HMGB)-1 and CXC chemokine receptor (CXCR)-4. CTC exposed to 25mM glucose for 24 hours resulted in the downregulation of HSP60 and Sirtuin-1. Prolonged exposure to hyperglycemia led to decrease in the expression of CX43 and CXCR4; thereby adversely affecting cardiomyocyte function. Upregulated expression of DNA-binding nuclear protein HMGB1 along with changes in H3K9me1 indicated long-term hyperglycemia-induced damage to cardiomyocytes. GLC treated CTC exhibited a decrease in the expression of RAGE, TLR4 and also demonstrated altered expression of CX43, CXCR4, and troponin I. Conclusions: This study suggests that GLC possesses cardioprotective effects in human cardiomyocytes exposed to prolonged hyperglycemia.more » « less
-
Articular cartilage is comprised of two main components, the extracellular matrix (ECM) and the pericellular matrix (PCM). The PCM helps to protect chondrocytes in the cartilage from mechanical loads, but in patients with osteoarthritis, the PCM is weakened, resulting in increased chondrocyte stress. As chondrocytes are responsible for matrix synthesis and maintenance, it is important to understand how mechanical loads affect the cellular responses of chondrocytes. Many studies have examined chondrocyte responses to in vitro mechanical loading by embedding chondrocytes in 3-D hydrogels. However, these experiments are mostly performed in the absence of PCM, which may obscure important responses to mechanotransduction. Here, drop-based microfluidics is used to culture single chondrocytes in alginate microgels for cell-directed PCM synthesis that closely mimics the in vivo microenvironment. Chondrocytes formed PCM over 10 days in these single-cell 3-D microenvironments. Mechanotransduction studies were performed, in which single-cell microgels mimicking the cartilage PCM were embedded in high-stiffness agarose. After physiological dynamic compression in a custom-built bioreactor, microgels exhibited distinct metabolomic profiles from both uncompressed and monolayer controls. These results demonstrate the potential of single cell encapsulation in alginate microgels to advance cartilage tissue engineering and basic chondrocyte mechanobiology.more » « less
-
Mechanical forces impact cardiac cells and tissues over their entire lifespan, from development to growth and eventually to pathophysiology. However, the mechanobiological pathways that drive cell and tissue responses to mechanical forces are only now beginning to be understood, due in part to the challenges in replicating the evolving dynamic microenvironments of cardiac cells and tissues in a laboratory setting. Although many in vitro cardiac models have been established to provide specific stiffness, topography, or viscoelasticity to cardiac cells and tissues via biomaterial scaffolds or external stimuli, technologies for presenting time-evolving mechanical microenvironments have only recently been developed. In this review, we summarize the range of in vitro platforms that have been used for cardiac mechanobiological studies. We provide a comprehensive review on phenotypic and molecular changes of cardiomyocytes in response to these environments, with a focus on how dynamic mechanical cues are transduced and deciphered. We conclude with our vision of how these findings will help to define the baseline of heart pathology and of how these in vitro systems will potentially serve to improve the development of therapies for heart diseases.more » « less