skip to main content


Title: Gradual and Discrete Ontogenetic Shifts in Rattlesnake Venom Composition and Assessment of Hormonal and Ecological Correlates
Ontogenetic shifts in venom occur in many snakes but establishing their nature as gradual or discrete processes required additional study. We profiled shifts in venom expression from the neonate to adult sizes of two rattlesnake species, the eastern diamondback and the timber rattlesnake. We used serial sampling and venom chromatographic profiling to test if ontogenetic change occurs gradually or discretely. We found evidence for gradual shifts in overall venom composition in six of eight snakes, which sometimes spanned more than two years. Most chromatographic peaks shift gradually, but one quarter shift in a discrete fashion. Analysis of published diet data showed gradual shifts in overall diet composition across the range of body sizes attained by our eight study animals, while the shifts in abundance of different prey classes varied in form from gradual to discrete. Testosterone concentrations were correlated with the change in venom protein composition, but the relationship is not strong enough to suggest causation. Venom research employing simple juvenile versus adult size thresholds may be failing to account for continuous variation in venom composition lifespan. Our results imply that venom shifts represent adaptive matches to dietary shifts and highlight venom for studies of alternative gene regulatory mechanisms.  more » « less
Award ID(s):
1638902
NSF-PAR ID:
10212734
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Toxins
Volume:
12
Issue:
10
ISSN:
2072-6651
Page Range / eLocation ID:
659
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The same selective forces that give rise to rapid inter- and intraspecific divergence in snake venoms can also favor differences in venoms across life-history stages. Ontogenetic changes in venom composition are well known and widespread in snakes but have not been investigated to the level of unambiguously identifying the specific loci involved. The eastern diamondback rattlesnake was previously shown to undergo an ontogenetic shift in venom composition at sexual maturity, and this shift accounted for more venom variation than geography. To characterize the genetics underlying the ontogenetic venom compositional change inC. adamanteus, we sequenced adult/juvenile pairs of venom-gland transcriptomes from five populations previously shown to have different adult venom compositions. We identified a total of 59 putative toxin transcripts for C. adamanteus, and 12 of these were involved in the ontogenetic change. Three toxins were downregulated, and nine were upregulated in adults relative to juveniles. Adults and juveniles expressed similar total levels of snake-venom metalloproteinases but differed substantially in their featured paralogs, and adults expressed higher levels of Bradykinin-potentiating and C-type natriuretic peptides, nerve growth factor, and specific paralogs of phospholipases A2and snake venom serine proteinases. Juvenile venom was more toxic to mice, indicating that the expression differences resulted in a phenotypically, and therefore potentially ecologically, significant difference in venom function. We also showed that adult and juvenile venom-gland transcriptomes for a species with known ontogenetic venom variation were equally effective at individually providing a full characterization of the venom genes of a species but that any particular individual was likely to lack several toxins in their transcriptome. A full characterization of a species’ venom-gene complement therefore requires sequencing more than one individual, although the ages of the individuals are unimportant.

     
    more » « less
  2. null (Ed.)
    Ontogenetic changes in venom composition have important ecological implications due the relevance of venom in prey acquisition and defense. Additionally, intraspecific venom variation has direct medical consequences for the treatment of snakebite. However, ontogenetic changes are not well documented in most species. The Mexican Black-tailed Rattlesnake (Crotalus molossus nigrescens) is large-bodied and broadly distributed in Mexico. To document venom variation and test for ontogenetic changes in venom composition, we obtained venom samples from twenty-seven C. m. nigrescens with different total body lengths (TBL) from eight states in Mexico. The primary components in the venom were detected by reverse-phase HPLC, western blot, and mass spectrometry. In addition, we evaluated the biochemical (proteolytic, coagulant and fibrinogenolytic activities) and biological (LD50 and hemorrhagic activity) activities of the venoms. Finally, we tested for recognition and neutralization of Mexican antivenoms against venoms of juvenile and adult snakes. We detected clear ontogenetic venom variation in C. m. nigrescens. Venoms from younger snakes contained more crotamine-like myotoxins and snake venom serine proteinases than venoms from older snakes; however, an increase of snake venom metalloproteinases was detected in venoms of larger snakes. Venoms from juvenile snakes were, in general, more toxic and procoagulant than venoms from adults; however, adult venoms were more proteolytic. Most of the venoms analyzed were hemorrhagic. Importantly, Mexican antivenoms had difficulties recognizing low molecular mass proteins (<12 kDa) of venoms from both juvenile and adult snakes. The antivenoms did not neutralize the crotamine effect caused by the venom of juveniles. Thus, we suggest that Mexican antivenoms would have difficulty neutralizing some human envenomations and, therefore, it may be necessary improve the immunization mixture in Mexican antivenoms to account for low molecular mass proteins, like myotoxins. 
    more » « less
  3. null (Ed.)
    Ontogenetic changes in venom composition have been described in Bothrops snakes, but only a few studies have attempted to identify the targeted paralogues or the molecular mechanisms involved in modifications of gene expression during ontogeny. In this study, we decoded B. jararacussu venom gland transcripts from six specimens of varying sizes and analyzed the variability in the composition of independent venom proteomes from 19 individuals. We identified 125 distinct putative toxin transcripts, and of these, 73 were detected in venom proteomes and only 10 were involved in the ontogenetic changes. Ontogenetic variability was linearly related to snake size and did not correspond to the maturation of the reproductive stage. Changes in the transcriptome were highly predictive of changes in the venom proteome. The basic myotoxic phospholipases A2 (PLA2s) were the most abundant components in larger snakes, while in venoms from smaller snakes, PIII-class SVMPs were the major components. The snake venom metalloproteinases (SVMPs) identified corresponded to novel sequences and conferred higher pro-coagulant and hemorrhagic functions to the venom of small snakes. The mechanisms modulating venom variability are predominantly related to transcriptional events and may consist of an advantage of higher hematotoxicity and more efficient predatory function in the venom from small snakes. 
    more » « less
  4. Abstract

    Negative impacts of discrete, short‐term disturbances to wildlife populations are well‐documented. The consequences of more gradual environmental change are less apparent and harder to study because they play out over longer periods and are often indirect in their action. Yet, they can drive the decline of wildlife populations even in seemingly pristine and currently well‐protected habitats. One such environmental change is a successional shift in a community's species composition as it regenerates from disturbance caused by past human land use. Early and middle successional tree species often provide key foods to folivores and frugivores, but the abundance of these resources drops as the forest matures, with adverse repercussions for these consumers. Our 44‐year record (1974–2018) of howler monkey (Alouatta palliata) group sizes and demographic composition from Barro Colorado Island, Panama, a protected reserve, documents an example of this phenomenon. After 70 years of relative stability, the mean size of howler monkey groups exhibited a marked decline, beginning in 2003. This downward trajectory in group size has continued through the most recent census in 2018. The composition of howler groups also changed significantly during the study period, with the patterns of decline differing among age/sex classes. There is no evidence that these changes were caused by increased rates of emigration, group fission, predation, parasitism, or disease. Rather, they are best explained by an island‐wide, succession‐driven decline in the densities of two species of free‐standing fig trees,Ficus yoponensisandF. insipida, which together were providing ~36% ofBCIhowlers’ annual diet.

    Abstract in Spanish is available with online material.

     
    more » « less
  5. Abstract

    A diversity of defence colourations that shift over time provides protection against natural enemies. Adaptations for camouflage depend on an organism’s interactions with the natural environment (predators, habitat), which can change ontogenetically. Wallace’s flying frogs (Rhacophorus nigropalmatus) are cryptic emerald green in their adult life stage, but juveniles are bright red and develop white spots on their back 1 month after metamorphosis. This latter conspicuous visual appearance might function as antipredator strategy, where frogs masquerade as bird or bat droppings so that predators misidentified them as inedible objects. To test this idea, we created different paraffin wax frog models—red with white spots, red without white spots, green, and unpainted—and placed them in equal numbers within a > 800 m2rainforest house at the Vienna Zoo. This environment closely resembles the Bornean rainforest and includes several free-living avian predators of frogs. We observed an overall hit rate of 15.5%. A visual model showed that the contrast of red, green and control models against the background colouration could be discriminated by avian predators, whereas green models had less chromatic difference than red morphs. The attack rate was significantly greater for red but was reduced by half when red models had white spots. The data therefore supports the hypothesis that the juvenile colouration likely acts as a masquerade strategy, disguising frogs as animal droppings which provides similar protection as the cryptic green adult colour. We discuss the ontogenetic colour change as a possible antipredator strategy in relation to the different habitats used at different life stages.

    Significance statement

    Predation pressure and the evolution of antipredator strategies site at the cornerstone of animal-behaviour research. Effective antipredator strategies can change in response to different habitats that animals use during different life stages. We study ontogenetic shifts in colour change as dynamic antipredator strategy in juvenile and adult Wallace’s flying frogs. We show that the unusual colour pattern of juveniles (bright red with small white spots) likely functions as a masquerade of animal droppings. Specifically, we show that white dotting, which can be associated with animal faeces, acts as the main visual feature that turns an otherwise highly conspicuous individual into a surprisingly camouflaged one. To our knowledge, this is the first experimental exploration of a vertebrate masquerading as animal droppings.

     
    more » « less