skip to main content

Title: A mechanism for neurofilament transport acceleration through nodes of Ranvier
Neurofilaments are abundant space-filling cytoskeletal polymers in axons that are transported along microtubule tracks. Neurofilament transport is accelerated at nodes of Ranvier, where axons are locally constricted. Strikingly, these constrictions are accompanied by sharp decreases in neurofilament number, no decreases in microtubule number, and increases in the packing density of these polymers, which collectively bring nodal neurofilaments closer to their microtubule tracks. We hypothesize that this leads to an increase in the proportion of time that the filaments spend moving and that this can explain the local acceleration. To test this, we developed a stochastic model of neurofilament transport that tracks their number, kinetic state, and proximity to nearby microtubules in space and time. The model assumes that the probability of a neurofilament moving is dependent on its distance from the nearest available microtubule track. Taking into account experimentally reported numbers and densities for neurofilaments and microtubules in nodes and internodes, we show that the model is sufficient to explain the local acceleration of neurofilaments within nodes of Ranvier. This suggests that proximity to microtubule tracks may be a key regulator of neurofilament transport in axons, which has implications for the mechanism of neurofilament accumulation in development and disease.
Authors:
; ;
Editors:
Mogilner, Alex
Award ID(s):
1656765 1656784
Publication Date:
NSF-PAR ID:
10212743
Journal Name:
Molecular Biology of the Cell
Volume:
31
Issue:
7
Page Range or eLocation-ID:
640 to 654
ISSN:
1059-1524
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Microtubules are dynamic tubulin polymers responsible for many cellular processes, including the capture and segregation of chromosomes during mitosis. In contrast to textbook models of tubulin self-assembly, we have recently demonstrated that microtubules elongate by addition of bent guanosine triphosphate tubulin to the tips of curving protofilaments. Here we explore this mechanism of microtubule growth using Brownian dynamics modeling and electron cryotomography. The previously described flaring shapes of growing microtubule tips are remarkably consistent under various assembly conditions, including different tubulin concentrations, the presence or absence of a polymerization catalyst or tubulin-binding drugs. Simulations indicate that development of substantialmore »forces during microtubule growth and shortening requires a high activation energy barrier in lateral tubulin-tubulin interactions. Modeling offers a mechanism to explain kinetochore coupling to growing microtubule tips under assisting force, and it predicts a load-dependent acceleration of microtubule assembly, providing a role for the flared morphology of growing microtubule ends.

    « less
  2. Abstract

    A wide range of the observed variability in the ITCZ is frequently explained in terms of equatorially trapped modes arising from Matsuno’s linear shallow-water model. Here, a series of zonally constant, meridionally symmetric aquachannel WRF simulations are used to study the propagation of tropical cloud clusters (CCs; patches of deep cloudiness and precipitation) in association with eastward-moving super cloud clusters (SCCs), also called convectively coupled Kelvin waves (CCKWs). Two independent but complementary methods are used: the first, from a local approach, involves a CC-tracking algorithm, while the second uses Lagrangian trajectories in a nonlocal framework. We show that themore »large-scale flow in low to midlevels advects the CCs either eastward or westward depending on model climatology, proximity to the CCKW axis, and latitude. Moreover, for most analyzed cases, sequences of CCs oscillate, describing qualitatively sinusoidal-like paths in longitude–time space, although with sharp transitions from westward to eastward motion due to westerly wind burst activity associated with the CCKWs. We also find that the discrete precipitation elements (CCs) are embedded in continuous tracks of positive moisture anomalies, which are parallel to the Lagrangian trajectories themselves. A conceptual model of the nonlinear SCC–CC interaction is presented.

    « less
  3. This study compares the role of electrostatics in the binding process between microtubules and two dynein microtubule-binding domains (MTBDs): cytoplasmic and axonemal. These two dyneins are distinctively different in terms of their functionalities: cytoplasmic dynein is processive, while axonemal dynein is involved in beating. In both cases, the binding requires frequent association/disassociation between the microtubule and MTBD, and involves highly negatively charged microtubules, including non-structured C-terminal domains (E-hooks), and an MTBD interface that is positively charged. This indicates that electrostatics play an important role in the association process. Here, we show that the cytoplasmic MTBD binds electrostatically tighter to microtubulesmore »than to the axonemal MTBD, but the axonemal MTBD experiences interactions with microtubule E-hooks at longer distances compared with the cytoplasmic MTBD. This allows the axonemal MTBD to be weakly bound to the microtubule, while at the same time acting onto the microtubule via the flexible E-hooks, even at MTBD–microtubule distances of 45 Å. In part, this is due to the charge distribution of MTBDs: in the cytoplasmic MTBD, the positive charges are concentrated at the binding interface with the microtubule, while in the axonemal MTBD, they are more distributed over the entire structure, allowing E-hooks to interact at longer distances. The dissimilarities of electrostatics in the cases of axonemal and cytoplasmic MTBDs were found not to result in a difference in conformational dynamics on MTBDs, while causing differences in the conformational states of E-hooks. The E-hooks’ conformations in the presence of the axonemal MTBD were less restricted than in the presence of the cytoplasmic MTBD. In parallel with the differences, the common effect was found that the structural fluctuations of MTBDs decrease as either the number of contacts with E-hooks increases or the distance to the microtubule decreases.« less
  4. Microtubules are dynamic polymers that play fundamental roles in all eukaryotes. Despite their importance, how new microtubules form is poorly understood. Textbooks have focused on variations of a nucleation–elongation mechanism in which monomers rapidly equilibrate with an unstable oligomer (nucleus) that limits the rate of polymer formation; once formed, the polymer then elongates efficiently from this nucleus by monomer addition. Such models faithfully describe actin assembly, but they fail to account for how more complex polymers like hollow microtubules assemble. Here, we articulate a new model for microtubule formation that has three key features: (1) microtubules initiate via rectangular, sheet-likemore »structures that grow faster the larger they become; (2) the dominant pathway proceeds via accretion, the stepwise addition of longitudinal or lateral layers; and (3) a “straightening penalty” to account for the energetic cost of tubulin’s curved-to-straight conformational transition. This model can quantitatively fit experimental assembly data, providing new insights into biochemical determinants and assembly pathways for microtubule nucleation.

    « less
  5. Context.   Tycho ’s supernova remnant (SNR) is associated with the historical supernova (SN) event SN 1572 of Type Ia. The explosion occurred in a relatively clean environment, and was visually observed, providing an age estimate. This SNR therefore represents an ideal astrophysical test-bed for the study of cosmic-ray acceleration and related phenomena. A number of studies suggest that shock acceleration with particle feedback and very efficient magnetic-field amplification combined with Alfvénic drift are needed to explain the rather soft radio spectrum and the narrow rims observed in X-rays. Aims. We show that the broadband spectrum of Tycho ’s SNRmore »can alternatively be well explained when accounting for stochastic acceleration as a secondary process. The re-acceleration of particles in the turbulent region immediately downstream of the shock should be efficient enough to impact particle spectra over several decades in energy. The so-called Alfvénic drift and particle feedback on the shock structure are not required in this scenario. Additionally, we investigate whether synchrotron losses or magnetic-field damping play a more profound role in the formation of the non-thermal filaments. Methods. We solved the full particle transport equation in test-particle mode using hydrodynamic simulations of the SNR plasma flow. The background magnetic field was either computed from the induction equation or follows analytic profiles, depending on the model considered. Fast-mode waves in the downstream region provide the diffusion of particles in momentum space. Results. We show that the broadband spectrum of Tycho can be well explained if magnetic-field damping and stochastic re-acceleration of particles are taken into account. Although not as efficient as standard diffusive shock acceleration, stochastic acceleration leaves its imprint on the particle spectra, which is especially notable in the emission at radio wavelengths. We find a lower limit for the post-shock magnetic-field strength ∼330  μ G, implying efficient amplification even for the magnetic-field damping scenario. Magnetic-field damping is necessary for the formation of the filaments in the radio range, while the X-ray filaments are shaped by both the synchrotron losses and magnetic-field damping.« less