On decadal time scales, Indian Ocean sea surface temperatures (SSTs) exhibit coherent basin‐wide changes, but their origins are not well understood. Here we analyze observations and model simulations from Coupled Model Intercomparison Project Phase 6 and Community Earth System Model Version 1 to quantify the roles of external forcing and internal climate variability in causing Indian Ocean decadal SST variations. Results show that both external forcing and internal variability since 1920 have contributed to the observed decadal variations in linearly detrended Indian Ocean SSTs, and they exhibit an out‐of‐phase relationship since the 1950s. The internally‐generated variations arise from remote influences from the tropical Pacific and possible contributions from internal local processes, while the influence from the Atlantic Multidecadal Oscillation is opposite to that of the Interdecadal Pacific Oscillation. Decadal SST changes caused by nonlinear variations in greenhouse gases and aerosols are roughly out‐of‐phase with the internal variability, thus dampening observed SST variations since the 1950s.
- Award ID(s):
- 1935279
- PAR ID:
- 10212771
- Date Published:
- Journal Name:
- Journal of Climate
- ISSN:
- 0894-8755
- Page Range / eLocation ID:
- 1 to 50
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract A critical issue is determining the factors that control the year-to-year variability in precipitation over southern Asia. In this study, we employ a cyclostationary linear inverse model (CS-LIM) to quantify the relative contribution of tropical Pacific and Indian Ocean sea surface temperature anomalies (SSTAs) to the interannual variability of the Asian monsoon, especially Indian summer monsoon rainfall (ISMR). Through a series of CS-LIM experiments, we isolate the impacts of the direct forcing from Pacific SSTAs, Indian Ocean SSTAs, and their interaction on Asian monsoon rainfall variability. Our results reveal distinct patterns of influence with the direct forcing from the Pacific (Indian) Ocean tending to enhance (reduce) the magnitude of precipitation variability, while the Indo-Pacific interaction acts to strongly damp the variability of Asian monsoon precipitation, especially over India. We further investigate these specific impacts on ISMR by analyzing the relationship between tropical Indo-Pacific SSTAs and the leading three empirical orthogonal functions (EOFs) of ISMR. The results from our CS-LIM experiments indicate that the direct forcing from El Niño–Southern Oscillation (ENSO) enhances the variability of the first and third EOFs, while the Indian Ocean SSTA opposes ENSO’s effects, which is consistent with previous studies. Our new results show that the tropical Indo-Pacific interaction strongly damps ISMR variability, which is due to the ENSO-induced Indian Ocean dipole (IOD) opposing the direct impacts from ENSO on ISMR. Additionally, reduced ENSO amplitude and duration associated with the Indo-Pacific interaction may also contribute to the damping effect on ISMR, but this requires further study to understand the relevant mechanisms.
-
El Niño–Southern Oscillation (ENSO) peaks in boreal winter but its impact on Indo-western Pacific climate persists for another two seasons. Key ocean–atmosphere interaction processes for the ENSO effect are investigated using the Pacific Ocean–Global Atmosphere (POGA) experiment with a coupled general circulation model, where tropical Pacific sea surface temperature (SST) anomalies are restored to follow observations while the atmosphere and oceans are fully coupled elsewhere. The POGA shows skills in simulating the ENSO-forced warming of the tropical Indian Ocean and an anomalous anticyclonic circulation pattern over the northwestern tropical Pacific in the post–El Niño spring and summer. The 10-member POGA ensemble allows decomposing Indo-western Pacific variability into the ENSO forced and ENSO-unrelated (internal) components. Internal variability is comparable to the ENSO forcing in magnitude and independent of ENSO amplitude and phase. Random internal variability causes apparent decadal modulations of ENSO correlations over the Indo-western Pacific, which are high during epochs of high ENSO variance. This is broadly consistent with instrumental observations over the past 130 years as documented in recent studies. Internal variability features a sea level pressure pattern that extends into the north Indian Ocean and is associated with coherent SST anomalies from the Arabian Sea to the western Pacific, suggestive of ocean–atmosphere coupling.
-
Abstract The influence of El Niño–Southern Oscillation (ENSO) in the Asian monsoon region can persist through the post-ENSO summer, after the sea surface temperature (SST) anomalies in the tropical Pacific have dissipated. The long persistence of coherent post-ENSO anomalies is caused by a positive feedback due to interbasin ocean–atmospheric coupling, known as the Indo-western Pacific Ocean capacitor (IPOC) effect, although the feedback mechanism itself does not necessarily rely on the antecedence of ENSO events, suggesting the potential for substantial internal variability independent of ENSO. To investigate the respective role of ENSO forcing and non-ENSO internal variability, we conduct ensemble “forecast” experiments with a full-physics, globally coupled atmosphere–ocean model initialized from a multidecadal tropical Pacific pacemaker simulation. The leading mode of internal variability as represented by the forecast-ensemble spread resembles the post-ENSO IPOC, despite the absence of antecedent ENSO forcing by design. The persistent atmospheric and oceanic anomalies in the leading mode highlight the positive feedback mechanism in the internal variability. The large sample size afforded by the ensemble spread allows us to identify robust non-ENSO precursors of summer IPOC variability, including a cool SST patch over the tropical northwestern Pacific, a warming patch in the tropical North Atlantic, and downwelling oceanic Rossby waves in the tropical Indian Ocean south of the equator. The pathways by which the precursors develop into the summer IPOC mode and the implications for improved predictability are discussed.
-
Abstract Indian Ocean meridional heat transport (MHTIO) drives climate and ecosystem impacts, through changes to ocean temperature. Improved understanding of natural variability in tropical and subtropical MHTIOis needed to contextualize observations and future projections. Previous studies suggest that El Niño‐Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) can drive variability in MHTIO. However, it is unclear whether internally generated IOD can drive variability in MHTIO, or if the apparent relationship between IOD and MHTIOarises because both are modulated by ENSO. Here, we use a model experiment which dynamically removes ENSO to determine the role of internally forced IOD on MHTIO. We find that IOD is not linked to anomalies in MHTIO. Nevertheless, internal atmospheric variability drives significant MHTIOvariability. There is little evidence for decadal or multidecadal variability in MHTIO, suggesting this may be a region where an anthropogenic trend rises above the level of internal variability sooner.