skip to main content

Title: Role of Tropical Variability in Driving Decadal Shifts in the Southern Hemisphere Summertime Eddy-Driven Jet
Abstract The Southern Hemisphere summertime eddy-driven jet and storm tracks have shifted poleward over the recent few decades. In previous studies, explanations have mainly stressed the influence of external forcing in driving this trend. Here we examine the role of internal tropical SST variability in controlling the austral summer jet’s poleward migration, with a focus on interdecadal time scales. The role of external forcing and internal variability are isolated by using a hierarchy of Community Earth System Model version 1 (CESM1) simulations, including the pre-industrial control, large ensemble, and pacemaker runs. Model simulations suggest that in the early twenty-first century, both external forcing and internal tropical Pacific SST variability are important in driving a positive southern annular mode (SAM) phase and a poleward migration of the eddy-driven jet. Tropical Pacific SST variability, associated with the negative phase of the interdecadal Pacific oscillation (IPO), acts to shift the jet poleward over the southern Indian and southwestern Pacific Oceans and intensify the jet in the southeastern Pacific basin, while external forcing drives a significant poleward jet shift in the South Atlantic basin. In response to both external forcing and decadal Pacific SST variability, the transient eddy momentum flux convergence belt in the more » middle latitudes experiences a poleward migration due to the enhanced meridional temperature gradient, leading to a zonally symmetric southward migration of the eddy-driven jet. This mechanism distinguishes the influence of the IPO on the midlatitude circulation from the dynamical impact of ENSO, with the latter mainly promoting the subtropical wave-breaking critical latitude poleward and pushing the midlatitude jet to higher latitudes. « less
Authors:
; ; ; ; ; ;
Award ID(s):
1947282
Publication Date:
NSF-PAR ID:
10233249
Journal Name:
Journal of Climate
Volume:
33
Issue:
13
Page Range or eLocation-ID:
5445 to 5463
ISSN:
0894-8755
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In the past 40 years, the global annual mean surface temperature has experienced a nonuniform warming, differing from the spatially uniform warming simulated by the forced responses of large multimodel ensembles to anthropogenic forcing. Rather, it exhibits significant asymmetry between the Arctic and Antarctic, with intermittent and spatially varying warming trends along the Northern Hemisphere (NH) midlatitudes and a slight cooling in the tropical eastern Pacific. In particular, this “wavy” pattern of temperature changes over the NH midlatitudes features strong cooling over Eurasia in boreal winter. Here, we show that these nonuniform features of surface temperature changes are likelymore »tied together by tropical eastern Pacific sea surface temperatures (SSTs), via a global atmospheric teleconnection. Using six reanalyses, we find that this teleconnection can be consistently obtained as a leading circulation mode in the past century. This tropically driven teleconnection is associated with a Pacific SST pattern resembling the interdecadal Pacific oscillation (IPO), and hereafter referred to as the IPO-related bipolar teleconnection (IPO-BT). Further, two paleo-reanalysis reconstruction datasets show that the IPO-BT is a robust recurrent mode over the past 400 and 2000 years. The IPO-BT mode may thus serve as an important internal mode that regulates high-latitude climate variability on multidecadal time scales, favoring a warming (cooling) episode in the Arctic accompanied by cooling (warming) over Eurasia and the Southern Ocean (SO). Thus, the spatial nonuniformity of recent surface temperature trends may be partially explained by the enhanced appearance of the IPO-BT mode by a transition of the IPO toward a cooling phase in the eastern Pacific in the past decades.« less
  2. Abstract Interannual variability of the winter AR activities over the Northern hemisphere is investigated. The leading modes of AR variability over the North Pacific and North Atlantic are first identified and characterized. Over the Pacific, the first mode is characterized by a dipole structure with enhanced AR frequency along the AR peak region at about 30° N and reduced AR frequency further north. The second mode exhibits a tri-pole structure with a narrow band of positive AR anomalies at about 30° N and sandwiched by negative anomalies. Over the Atlantic, the first mode exhibits an equatorward shift of the ARsmore »with positive anomalies and negative anomalies located on the equatorward and poleward side of the AR peak region at about 40° N , respectively. The second mode is associated with the strengthening and eastward extension of the AR peak region which is sandwiched by negative anomalies. A large ensemble of atmospheric global climate models from the Coupled Model Intercomparison Project phase 6 (CMIP6), which shows high skills in simulating these modes, is then used to quantify the roles of sea surface temperature (SST) forcing versus internal atmospheric variability in driving the formation of these modes. Results show that SST forcing explains about half of the variance for the Pacific leading modes, while that number drops to about a quarter for the Atlantic leading modes, suggesting higher predictability for the Pacific AR variability. Additional ensemble driven only by observed tropical SST is further utilized to demonstrate the more important role that tropical SST plays in controlling the Pacific AR variability while both tropical and extratropical SST exert comparable influences on the Atlantic AR variability.« less
  3. Abstract Many previous studies have shown that an Indian Ocean basin warming (IOBW) occurs usually during El Niño–Southern Oscillation (ENSO) decaying spring to summer seasons through modifying the equatorial zonal circulation. Decadal modulation associated with the interdecadal Pacific oscillation (IPO) is further investigated here to understand the nonstationary ENSO–IOBW relationship during ENSO decaying summer (July–September). During the positive IPO phase, significant warm sea surface temperature (SST) anomalies are observed over the tropical Indian Ocean in El Niño decaying summers and vice versa for La Niña events, while these patterns are not well detected in the negative IPO phase. Different decayingmore »speeds of ENSO associated with the IPO phase, largely controlled by both zonal advective and thermocline feedbacks, are suggested to be mainly responsible for these different ENSO–IOBW relationships. In contrast to ENSO events in the negative IPO phase, the ones in the positive IPO phase display a slower decaying speed and delay their transitions both from a warm to a cold state and a cold to a warm state. The slower decay of El Niño and La Niña thereby helps to sustain the teleconnection forcing over the equatorial Indian Ocean and corresponding SST anomalies there can persist into summer. This IPO modulation of the ENSO–IOBW relationship carries important implications for the seasonal prediction of the Indian Ocean SST anomalies and associated summer climate anomalies.« less
  4. Abstract Using an assemblage of four ice cores collected around the Pacific basin, one of the first basinwide histories of Pacific climate variability has been created. This ice core–derived index of the interdecadal Pacific oscillation (IPO) incorporates ice core records from South America, the Himalayas, the Antarctic Peninsula, and northwestern North America. The reconstructed IPO is annually resolved and dates to 1450 CE. The IPO index compares well with observations during the instrumental period and with paleo-proxy assimilated datasets throughout the entire record, which indicates a robust and temporally stationary IPO signal for the last ~550 years. Paleoclimate reconstructions frommore »the tropical Pacific region vary greatly during the Little Ice Age (LIA), although the reconstructed IPO index in this study suggests that the LIA was primarily defined by a weak, negative IPO phase and hence more La Niña–like conditions. Although the mean state of the tropical Pacific Ocean during the LIA remains uncertain, the reconstructed IPO reveals some interesting dynamical relationships with the intertropical convergence zone (ITCZ). In the current warm period, a positive (negative) IPO coincides with an expansion (contraction) of the seasonal latitudinal range of the ITCZ. This relationship is not stationary, however, and is virtually absent throughout the LIA, suggesting that external forcing, such as that from volcanoes and/or reduced solar irradiance, could be driving either the ITCZ shifts or the climate dominating the ice core sites used in the IPO reconstruction.« less
  5. Abstract Previous studies showed that global cloud-radiative changes contribute half or more to the midlatitude atmospheric circulation response to global warming. Here, we investigate the relative importance of tropical, midlatitude, and polar cloud-radiative changes for the annual-mean, wintertime, and summertime circulation response across regions in AMIP-like simulations. To this end, we study global warming simulations from the ICON model run with the cloud-locking method and prescribed sea surface temperatures, which isolate the impact of changes in atmospheric cloud-radiative heating. Tropical cloud changes dominate the global cloud impact on the 850 hPa zonal wind, jet strength, and storm track responses acrossmore »most seasons and regions. For the jet shift, a more diverse picture is found. In the annual mean and DJF, tropical and midlatitude cloud changes contribute substantially to the poleward jet shift in all regions. The poleward jet shift is further supported by polar cloud changes across the Northern Hemisphere but not in the Southern Hemisphere. In JJA, the impact of regional cloud changes on the jet position is small, consistent with an overall small jet shift during this season. The jet shift can be largely understood via the anomalous atmospheric cloud-radiative heating in the tropical and midlatitude upper troposphere. The circulation changes are broadly consistent with the influence of cloud-radiative changes on upper-tropospheric baroclinicity and thus the mean potential energy available for conversion into eddy kinetic energy. Our results help to explain the jet response to global warming and highlight the importance of tropical and midlatitude cloud-radiative changes for this response.« less