skip to main content


Title: Shape of particle backscattering in the North Pacific Ocean: the χ factor

Volume scattering functions were measured using two instruments in waters near the Ocean Station Papa (50°N 145°W) and show consistency in estimating theχ<#comment/>factor attributable to particles (χ<#comment/>p). Whileχ<#comment/>pin the study area exhibits a limited variability, it could vary significantly when compared with data obtained in various parts of the global oceans. The global comparison also confirms that the minimal variation ofχ<#comment/>pis at scattering angles near 120°. With an uncertainty of<<#comment/>10%<#comment/>,χ<#comment/>pcan be assumed as spectrally independent. For backscatter sensors with wide field of view (FOV), the averaging of scattering within the FOV reduces the values ofχ<#comment/>pneeded to compute the backscattering coefficient by up to 20% at angles<<#comment/>130∘<#comment/>.

 
more » « less
NSF-PAR ID:
10212775
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Applied Optics
Volume:
60
Issue:
5
ISSN:
1559-128X; APOPAI
Page Range / eLocation ID:
Article No. 1260
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Properly interpreting lidar (light detection and ranging) signal for characterizing particle distribution relies on a key parameter,χ<#comment/>p(π<#comment/>), which relates the particulate volume scattering function (VSF) at 180° (β<#comment/>p(π<#comment/>)) that a lidar measures to the particulate backscattering coefficient (bbp). However,χ<#comment/>p(π<#comment/>)has been seldom studied due to challenges in accurately measuringβ<#comment/>p(π<#comment/>)andbbpconcurrently in the field. In this study,χ<#comment/>p(π<#comment/>), as well as its spectral dependence, was re-examined using the VSFs measuredin situat high angular resolution in a wide range of waters.β<#comment/>p(π<#comment/>), while not measured directly, was inferred using a physically sound, well-validated VSF-inversion method. The effects of particle shape and internal structure on the inversion were tested using three inversion kernels consisting of phase functions computed for particles that are assumed as homogenous sphere, homogenous asymmetric hexahedra, or coated sphere. The reconstructed VSFs using any of the three kernels agreed well with the measured VSFs with a mean percentage difference<<#comment/>5%<#comment/>at scattering angles<<#comment/>170∘<#comment/>. At angles immediately near or equal to 180°, the reconstructedβ<#comment/>p(π<#comment/>)depends strongly on the inversion kernel.χ<#comment/>p(π<#comment/>)derived with the sphere kernels was smaller than those derived with the hexahedra kernel but consistent withχ<#comment/>p(π<#comment/>)estimated directly from high-spectral-resolution lidar andin situbackscattering sensor. The possible explanation was that the sphere kernels are able to capture the backscattering enhancement feature near 180° that has been observed for marine particles.χ<#comment/>p(π<#comment/>)derived using the coated sphere kernel was generally lower than those derived with the homogenous sphere kernel. Our result suggests thatχ<#comment/>p(π<#comment/>)is sensitive to the shape and internal structure of particles and significant error could be induced if a fixed value ofχ<#comment/>p(π<#comment/>)is to be used to interpret lidar signal collected in different waters. On the other hand,χ<#comment/>p(π<#comment/>)showed little spectral dependence.

     
    more » « less
  2. The absence of the single-photon nonlinearity has been a major roadblock in developing quantum photonic circuits at optical frequencies. In this paper, we demonstrate a periodically poled thin film lithium niobate microring resonator (PPLNMR) that reaches 5,000,000%/W second-harmonic conversion efficiency—almost 20-fold enhancement over the state-of-the-art—by accessing its largestχ<#comment/>(2)tensor componentd33via quasi-phase matching. The corresponding single-photon coupling rateg/2π<#comment/>is estimated to be 1.2 MHz, which is an important milestone as it approaches the dissipation rateκ<#comment/>/2π<#comment/>of best-available lithium niobate microresonators developed in the community. Using a figure of merit defined asg/κ<#comment/>, our device reaches a single-photon nonlinear anharmonicity approaching 1%. We show that, by further scaling of the device, it is possible to improve the single-photon anharmonicity to a regime where photon blockade effect can be manifested.

     
    more » « less
  3. Electro-optic quantum coherent interfaces map the amplitude and phase of a quantum signal directly to the phase or intensity of a probe beam. At terahertz frequencies, a fundamental challenge is not only to sense such weak signals (due to a weak coupling with a probe in the near-infrared) but also to resolve them in the time domain. Cavity confinement of both light fields can increase the interaction and achieve strong coupling. Using this approach, current realizations are limited to low microwave frequencies. Alternatively, in bulk crystals, electro-optic sampling was shown to reach quantum-level sensitivity of terahertz waves. Yet, the coupling strength was extremely weak. Here, we propose an on-chip architecture that concomitantly provides subcycle temporal resolution and an extreme sensitivity to sense terahertz intracavity fields below 20 V/m. We use guided femtosecond pulses in the near-infrared and a confinement of the terahertz wave to a volume ofVTHz∼<#comment/>10−<#comment/>9(λ<#comment/>THz/2)3in combination with ultraperformant organic molecules (r33=170pm/V) and accomplish a record-high single-photon electro-optic coupling rate ofgeo=2π<#comment/>×<#comment/>0.043GHz, 10,000 times higher than in recent reports of sensing vacuum field fluctuations in bulk media. Via homodyne detection implemented directly on chip, the interaction results into an intensity modulation of the femtosecond pulses. The single-photon cooperativity isC0=1.6×<#comment/>10−<#comment/>8, and the multiphoton cooperativity isC=0.002at room temperature. We show><#comment/>70dBdynamic range in intensity at 500 ms integration under irradiation with a weak coherent terahertz field. Similar devices could be employed in future measurements of quantum states in the terahertz at the standard quantum limit, or for entanglement of subsystems on subcycle temporal scales, such as terahertz and near-infrared quantum bits.

     
    more » « less
  4. The mid-IR spectroscopic properties ofEr3+doped low-phononCsCdCl3andCsPbCl3crystals grown by the Bridgman technique have been investigated. Using optical excitations at∼<#comment/>800nmand∼<#comment/>660nm, both crystals exhibited IR emissions at∼<#comment/>1.55,∼<#comment/>2.75,∼<#comment/>3.5, and∼<#comment/>4.5µ<#comment/>mat room temperature. The mid-IR emission at 4.5 µm, originating from the4I9/2→<#comment/>4I11/2transition, showed a long emission lifetime of∼<#comment/>11.6msforEr3+dopedCsCdCl3, whereasEr3+dopedCsPbCl3exhibited a shorter lifetime of∼<#comment/>1.8ms. The measured emission lifetimes of the4I9/2state were nearly independent of the temperature, indicating a negligibly small nonradiative decay rate through multiphonon relaxation, as predicted by the energy-gap law for low-maximum-phonon energy hosts. The room temperature stimulated emission cross sections for the4I9/2→<#comment/>4I11/2transition inEr3+dopedCsCdCl3andCsPbCl3were determined to be∼<#comment/>0.14×<#comment/>10−<#comment/>20cm2and∼<#comment/>0.41×<#comment/>10−<#comment/>20cm2, respectively. The results of Judd–Ofelt analysis are presented and discussed.

     
    more » « less
  5. Transparent electromagnetic interference (EMI) shielding is needed in many optoelectronic applications to protect electronic devices from surrounding radiation while allowing for high visible light transmission. However, very high transmission (over 92.5%), high EMI shielding efficiency (over 30 dB) structures have yet to be achieved in the literature. Bayesian optimization is used to optimize different nanophotonic structures for high EMI shielding efficiency (SE) and high visible light transmission (T¯<#comment/>vis). Below 90% average visible light transmission, sandwich structures consisting of high index dielectric/silver/high index dielectric films are determined to be optimal, where they are able to achieve 43.1 dB SE and 90.0%T¯<#comment/>vis. The high index of refraction dielectric layers reduce absorption losses in the silver and can be engineered to provide for antireflection through destructive interference. However, for optimal EMI shielding withT¯<#comment/>visabove 90%, the reflection losses at the air/dielectric interfaces need to be further reduced. Optimized double sided nanocone sandwich structures are determined to be best where they can achieve 41.2 dB SE and 90.8%T¯<#comment/>visas well as 35.6 dB SE and 95.1%T¯<#comment/>vis. K-means clustering is utilized to show the performance of characteristic near-Pareto optimal structures. Double sided nanocone structures are shown to exhibit omnidirectional visible transmission withSE = 35.6 dB and over 85%T¯<#comment/>visat incidence angles of 70∘<#comment/>.

     
    more » « less