Properly interpreting lidar (light detection and ranging) signal for characterizing particle distribution relies on a key parameter,
Volume scattering functions were measured using two instruments in waters near the Ocean Station Papa (50°N 145°W) and show consistency in estimating the
- NSF-PAR ID:
- 10212775
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Applied Optics
- Volume:
- 60
- Issue:
- 5
- ISSN:
- 1559-128X; APOPAI
- Format(s):
- Medium: X Size: Article No. 1260
- Size(s):
- Article No. 1260
- Sponsoring Org:
- National Science Foundation
More Like this
-
, which relates the particulate volume scattering function (VSF) at 180° ( ) that a lidar measures to the particulate backscattering coefficient ( ). However, has been seldom studied due to challenges in accurately measuring and concurrently in the field. In this study, , as well as its spectral dependence, was re-examined using the VSFs measured in situ at high angular resolution in a wide range of waters., while not measured directly, was inferred using a physically sound, well-validated VSF-inversion method. The effects of particle shape and internal structure on the inversion were tested using three inversion kernels consisting of phase functions computed for particles that are assumed as homogenous sphere, homogenous asymmetric hexahedra, or coated sphere. The reconstructed VSFs using any of the three kernels agreed well with the measured VSFs with a mean percentage difference at scattering angles . At angles immediately near or equal to 180°, the reconstructed depends strongly on the inversion kernel. derived with the sphere kernels was smaller than those derived with the hexahedra kernel but consistent with estimated directly from high-spectral-resolution lidar and in situ backscattering sensor. The possible explanation was that the sphere kernels are able to capture the backscattering enhancement feature near 180° that has been observed for marine particles.derived using the coated sphere kernel was generally lower than those derived with the homogenous sphere kernel. Our result suggests that is sensitive to the shape and internal structure of particles and significant error could be induced if a fixed value of is to be used to interpret lidar signal collected in different waters. On the other hand, showed little spectral dependence. -
The mid-IR spectroscopic properties of
doped low-phonon and crystals grown by the Bridgman technique have been investigated. Using optical excitations at and , both crystals exhibited IR emissions at , , , and at room temperature. The mid-IR emission at 4.5 µm, originating from the transition, showed a long emission lifetime of for doped , whereas doped exhibited a shorter lifetime of . The measured emission lifetimes of the state were nearly independent of the temperature, indicating a negligibly small nonradiative decay rate through multiphonon relaxation, as predicted by the energy-gap law for low-maximum-phonon energy hosts. The room temperature stimulated emission cross sections for the transition in doped and were determined to be and , respectively. The results of Judd–Ofelt analysis are presented and discussed. -
We show that for spherical particles greater than ca. 5 µm, the differential scattering cross section is only weakly dependent on the real and imaginary parts of the refractive index (
) when integrated over angle ranges near and , respectively. With this knowledge, we set up an arrangement that collects scattered light in the ranges , , and . The weak functionality on refractive index for the first two angle ranges simplifies the inversion of scattering to the particle properties of diameter and the real and imaginary refractive indices. Our setup also uses a diamond-shaped incident beam profile that allows us to determine when a particle went through the exact center of the beam. Application of our setup to droplets of an absorbing liquid successfully determined the diameter and complex refractive index to accuracies ranging from a few to ten percent. Comparisons to simulated data derived from the Mie equations yielded similar results. -
We demonstrate the DC-Kerr effect in plasma enhanced chemical vapor deposition (PECVD) silicon-rich nitride (SRN) and use it to demonstrate a third order nonlinear susceptibility,
, as high as . We employ spectral shift versus applied voltage measurements in a racetrack resonator as a tool to characterize the nonlinear susceptibilities of these films. In doing so, we demonstrate a larger than that of silicon and argue that PECVD SRN can provide a versatile platform for employing optical phase shifters while maintaining a low thermal budget using a deposition technique readily available in CMOS process flows. -
Temperature scaling of collisional broadening parameters for krypton (absorber)
electronic transition centered at 107.3 nm in the presence of major combustion species (perturber) is investigated. The absorption spectrum in the vicinity of the transition is obtained from the fluorescence due to the two-photon excitation scan of krypton. Krypton was added in small amounts to major combustion species such as , , , and air, which then heated to elevated temperatures when flowed through a set of heated coils. In a separate experimental campaign, laminar premixed flat flame product mixtures of methane combustion were employed to extend the investigations to higher temperature ranges relevant to combustion. Collisional full width half maximum (FWHM) ( ) and shift ( ) were computed from the absorption spectrum by synthetically fitting Voigt profiles to the excitation scans, and their corresponding temperature scaling was determined by fitting power-law temperature dependencies to the and data for each perturber species. The temperature exponents of and for all considered combustion species (perturbers) were and , respectively. Whereas the temperature exponents of are closer to the value ( ) predicted by the dispersive interaction collision theory, the corresponding exponents of are in between the dispersive interaction theory and the kinetic theory of hard-sphere collisions. Comparison with existing literature on broadening parameters of NO, OH, and CO laser-induced fluorescence spectra reveal interesting contributions from non-dispersive interactions on the temperature exponent.