skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Case Study of Soil Moisture and Infiltration after an Urban Fire
There is an increased risk of future fire disturbances due to climate change and anthropogenic activity. These disturbances can impact soil moisture content and infiltration, which are important antecedent conditions for predicting rainfall–runoff processes in semi-arid regions. Yet these conditions are not well documented. This case study provides critical field measurements and information, which are needed to improve our understanding of mechanisms such as precipitation and temperature that lead to the variability of soil properties and processes in urban and burned landscapes. In June 2018, a fire burned a portion of the riparian zone in Alvarado Creek, an urban tributary of the San Diego River in California, United States. This fire provided an opportunity to observe soil moisture content and infiltration for one year after the fire. Three transects (one burned and two unburned) were monitored periodically to evaluate the complex spatial and temporal dynamics of soil moisture and infiltration patterns. Average dry season soil moisture content was less than five percent volume water content (%VWC) for all transects, and the burned transect exhibited the lowest %VWC during the wet season. Infiltration rates displayed a high degree of spatial and temporal variability. However, the location with the highest burn severity had the lowest average infiltration rate. The observed differences between the burned and unburned transects indicate that the fire altered hydrologic processes of the landscape and reduced the ability of the soil to retain water during the wet season. This research provides the first high-resolution soil moisture and infiltration field analysis of an urban fire-disturbed stream in southern California and a method to characterize post-fire hydrologic conditions for rainfall–runoff processes.  more » « less
Award ID(s):
1848577
PAR ID:
10212787
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Fire
Volume:
3
Issue:
2
ISSN:
2571-6255
Page Range / eLocation ID:
22
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Wildfire alters the hydrologic cycle, with important implications for water supply and hazards including flooding and debris flows. In this study we use a combination of electrical resistivity and stable water isotope analyses to investigate the hydrologic response during storms in three catchments: one unburned and two burned during the 2020 Bobcat Fire in the San Gabriel Mountains, California, USA. Electrical resistivity imaging shows that in the burned catchments, rainfall infiltrated into the weathered bedrock and persisted. Stormflow isotope data indicate that the amount of mixing of surface and subsurface water during storms was similar in all catchments, despite higher streamflow post-fire. Therefore, both surface runoff and infiltration likely increased in tandem. These results suggest that the hydrologic response to storms in post-fire environments is dynamic and involves more surface-subsurface exchange than previously conceptualized, which has important implications for vegetation regrowth and post-fire landslide hazards for years following wildfire. 
    more » « less
  2. Post-fire flooding and debris flows are often triggered by increased overland flow resulting from wildfire impacts on soil infiltration capacity and surface roughness. Increasing wildfire activity and intensification of precipitation with climate change make improving understanding of post-fire overland flow a particularly pertinent task. Hydrologic signatures, which are metrics that summarize the hydrologic regime of watersheds using rainfall and runoff time series, can be calculated for large samples of watersheds relatively easily to understand post-fire hydrologic processes. We demonstrate that signatures designed specifically for overland flow reflect changes to overland flow processes with wildfire that align with previous case studies on burned watersheds. For example, signatures suggest increases in infiltration-excess overland flow and decrease in saturation-excess overland flow in the first and second years after wildfire in the majority of watersheds examined. We show that climate, watershed and wildfire attributes can predict either post-fire signatures of overland flow or changes in signature values with wildfire using machine learning. Normalized difference vegetation index (NDVI), air temperature, amount of developed/undeveloped land, soil thickness and clay content were the most used predictors by well-performing machine learning models. Signatures of overland flow provide a streamlined approach for characterizing and understanding post-fire overland flow, which is beneficial for watershed managers who must rapidly assess and mitigate the risk of post-fire hydrologic hazards after wildfire occurs. 
    more » « less
  3. In the natural environment, wildfires affect how water interacts with soil leading to potentially catastrophic phenomena such as flooding, debris flows, and decreased water quality. Wildfires can cause soil sealing from increased soil water repellency, which in turn reduces infiltration and increases flood risk during rainfall. A 2017 meta-analysis found two properties that were affected by soil burning processes: Sorptivity (the capacity of a soil to absorb or desorb liquid by capillarity, S) and hydraulic conductivity (the ability for soil to transmit water when saturated, Kfs). Changes in these properties act synergistically to reduce infiltration, which increases erosion by accelerating and amplifying surface runoff. Thus, this research seeks to understand how soils subjected to severe burning compare to unburned soils. Using a mini-disk infiltrometer, field tests measured hydraulic conductivity of soils burned under slash and burn piles during the winters of 2016-17, 2020-21, and 2023-23 to better understand changes that occur in soil-hydraulic properties over time. These slash and burn piles served as approximate impacts for wildfires. Slash and burn piles also allow for paired measurements of unburned soils immediately adjacent to the burned area. Hydraulic conductivity was not significantly different when comparing burned and unburned soils 1 year after being burned. However, there was a significant difference between the hydraulic conductivity of soils burned 3 years ago compared to both unburned soil and soils burned 1 year ago. This suggests an interim process between 1- and 3-years post-burn that reduces hydraulic conductivity of burned soils. 
    more » « less
  4. Abstract Wildfire records demonstrate worsening patterns coupled with the spread to higher altitudes in several regions, raising the risk of post‐wildfire ground failures. This study investigates the post‐wildfire stability of unsaturated hillslopes against rainfall‐triggered shallow landslides. We developed a new physics‐based analytical framework incorporating wildfire‐induced changes in soil properties and near‐surface processes affecting the hillslope stability. A coupled hydromechanical infiltration model is integrated into an infinite slope stability analysis to simulate temporal changes in the depth profiles of soil water content, pressure head, and the resulting factor of safety (F.S.) of a vegetated slope. We consider the antecedent conditions of soil and vegetation cover, including the recovery phase after the fire, wildfire‐induced alterations in transpiration, and time‐varying infiltration rates. The model is verified against numerical simulations and employed in parametric studies evaluating the effects of wildfire severity and rainfall intensity‐duration. For the cases examined, it was shown that wildfire could reduce the F.S. of slopes by 25%. As a case study, the model successfully captured shallow rainfall‐triggered landslides that occurred in the Las Lomas watershed in California, USA, in 2019, 3 years after the Fish Fire burned the area. The proposed model uses measurable hillslope and wildfire characteristics and can be employed to evaluate the risk of shallow landslides in wildfire‐prone areas. 
    more » « less
  5. As wildfires become larger and more severe across western North America, it grows increasingly important to understand how they will affect the biogeochemical processes influencing ecosystem recovery. Soil nitrogen (N) cycling is a key process constraining recovery rates. In addition to its direct responses to fire, N cycling can also respond to other post-fire transformations, including increases or decreases in microbial biomass, soil moisture, and pH. To examine the short-term effects of wildfire on belowground processes in the northern Sierra Nevada, we collected soil samples along a gradient from unburned to high fire severity over 10  months following a wildfire. This included immediate pre- and post-fire sampling for many variables at most sites. While season and soil moisture did not substantially alter pH, microbial biomass, net N mineralisation, and nitrification in unburned locations, they interacted with burn severity in complex ways to constrain N cycling after fire. In areas that burned, pH increased (at least initially) after fire, and there were non-monotonic changes in microbial biomass. Net N mineralisation also had variable responses to wetting in burned locations. These changes suggest burn severity and precipitation patterns can interact to alter N cycling rates following fire. 
    more » « less