Abstract Nebular-phase observations of peculiar Type Ia supernovae (SNe Ia) provide important constraints on progenitor scenarios and explosion dynamics for both these rare SNe and the more common, cosmologically useful SNe Ia. We present observations from an extensive ground- and space-based follow-up campaign to characterize SN 2022pul, a super-Chandrasekhar mass SN Ia (alternatively “03fg-like” SN), from before peak brightness to well into the nebular phase across optical to mid-infrared (MIR) wavelengths. The early rise of the light curve is atypical, exhibiting two distinct components, consistent with SN Ia ejecta interacting with dense carbon–oxygen (C/O)-rich circumstellar material (CSM). In the optical, SN 2022pul is most similar to SN 2012dn, having a low estimated peak luminosity (MB= −18.9 mag) and high photospheric velocity relative to other 03fg-like SNe. In the nebular phase, SN 2022pul adds to the increasing diversity of the 03fg-like subclass. From 168 to 336 days after peakB-band brightness, SN 2022pul exhibits asymmetric and narrow emission from [Oi]λλ6300, 6364 (FWHM ≈ 2000 km s−1), strong, broad emission from [Caii]λλ7291, 7323 (FWHM ≈ 7300 km s−1), and a rapid Feiiito Feiiionization change. Finally, we present the first ever optical-to-MIR nebular spectrum of an 03fg-like SN Ia using data from JWST. In the MIR, strong lines of neon and argon, weak emission from stable nickel, and strong thermal dust emission (withT≈ 500 K), combined with prominent [Oi] in the optical, suggest that SN 2022pul was produced by a white dwarf merger within C/O-rich CSM.
more »
« less
Influence of the input-stage architecture on the in-laboratory test of a mid-infrared interferometer: application to the ALOHA up-conversion interferometer in the L band
ABSTRACT In the framework of the Astronomical Light Optical Hybrid Analysis (ALOHA) laboratory mid-infrared (MIR) up-conversion fibred interferometer in the L band, we report on the influence of the input-stage architecture. Using an amplitude division set-up in the visible or near-infrared is a straightforward choice in most cases. In the MIR context, the results are slightly different and we show that a wavefront division set-up is needed. These in-laboratory principle experiments allow us to measure a reliable 88 per cent instrumental contrast with high flux and to obtain fringes from faint sources at 3.5 μm with a spectral bandwith of 37 nm converted to 817 nm. An equivalent limiting L-band magnitude around 3.9, equivalent to 3.0 fW nm−1, could be demonstrated on 1 m class telescopes. This opens the possibility of planning future on-sky tests at the Center for High Angular Resolution Astronomy (CHARA) array and of predicting the performance attained.
more »
« less
- PAR ID:
- 10212821
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 501
- Issue:
- 1
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 531 to 540
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present an extensive archival analysis of a sample of local galaxies, combining multiwavelength data from GALEX, Spitzer, and Herschel to investigate “blue-side” mid-infrared (MIR) and “red-side” far-infrared (FIR) color–color correlations within the observed infrared spectral energy distributions. Our sample largely consists of the KINGFISH galaxies, with the important addition of a select few including NGC 5236 (M83) and NGC 4449. With data from the far-ultraviolet (∼0.15μm) through 500μm convolved to common angular resolution, we measure the photometry of kiloparsec-scale star-forming regions 36″ × 36″ in size. Star formation rates (SFRs), stellar masses, and metallicity distributions are derived throughout our sample. Focusing on thef70/f500“FIR” andf8/f24“MIR” flux density ratios (colors), we find that a subsample of galaxies demonstrate a strong IR color–color correlation within their star-forming regions, while others demonstrate uncorrelated colors. This division is driven by two main effects: (1) the local strength of star formation (SF) and (2) the metal content of the interstellar medium (ISM). Galaxies uniformly dominated by high surface densities of SF (e.g., NGC 5236) demonstrate strong IR color–color correlations, while galaxies that exhibit lower levels of SF and mixed environments (e.g., NGC 5457) demonstrate weaker or no correlation—explained by the increasing effect of varying ISM heating and metal content on the IR colors, specifically in the MIR. We find large dispersion in the SFR–L8(8μm luminosity) relation that is traced by the metallicity distributions, consistent with extant studies, highlighting its problematic use as an SFR indicator across diverse systems/samples.more » « less
-
The emerging technique of mid-infrared optical coherence tomography (MIR-OCT) takes advantage of the reduced scattering of MIR light in various materials and devices, enabling tomographic imaging at deeper penetration depths. Because of challenges in MIR detection technology, the image acquisition time is, however, significantly longer than for tomographic imaging methods in the visible/near-infrared. Here we demonstrate an alternative approach to MIR tomography with high-speed imaging capabilities. Through femtosecond nondegenerate two-photon absorption of MIR light in a conventional Si-based CCD camera, we achieve wide-field, high-definition tomographic imaging with chemical selectivity of structured materials and biological samples in mere seconds.more » « less
-
The photophysical properties of naturally occurring chlorophylls depend on the regioisomeric nature of the β-pyrrolic substituents. Such systems are the “gold standard” by which such effects are judged. However, simple extrapolations from what has been learned with chlorophylls may not be appropriate for other partially reduced porphyrinoids. Here we report the synthesis of a series of cis / trans -porphodilactones ( cis / trans -1) and related derivatives ( cis / trans 2–5) designed to probe the effect of regioisomeric substitution in porphyrinoids that incorporate degrees of unsaturation through the β-pyrrolic periphery that exceed those of chlorophyll. These test systems were obtained through β-pyrrolic modifications of the tetrapyrrolic core, which included reduction of β-diazalone to the corresponding dilactol moieties and 1,3-dipolar cycloadditions. In the case of cis - vs. trans -3 bearing two pyrrolidine-fused β-rings we found an unprecedented Δ Q L up to ca. 71 nm (2086 cm −1 ), where Δ Q L ( Q L means the lowest energy transfer band, also the S 0 → S 1 transition band, which is often assigned as Q y (0,0) band) refers to the transition energy difference between the corresponding cis / trans -isomers. The Δ Q L values for these and other systems reported here were found to depend on the differences in the HOMO–LUMO energy gap and to be tied to the degeneracy and energy level splitting of the FMOs, as inferred from a combination of MCD spectral studies and DFT calculations. The aromaticity, estimated from the chemical shifts of the N–H protons and supported by theoretical calculations ( e.g. , AICD plots and NICS(1) values), was found to correlate with the extent of porphyrin periphery saturation resulting from the specific β-modifications. The aromaticity proved inversely proportional to the degree to which the regioisomerism affected the photophysical properties as noted from plots of Δ Q L s in cm −1 vs. the average NICS(1) values for 1–5. Such a finding is not something that can be easily interpolated from prior work and thus reveals how aromaticity may be used to fine-tune photophysical effects in reduced porphyrinoids.more » « less
-
Summary Leaf optical properties impact leaf energy balance and thus leaf temperature. The effect of leaf development on mid‐infrared (MIR) reflectance, and hence thermal emissivity, has not been investigated in detail.We measured a suite of morphological characteristics, as well as directional‐hemispherical reflectance from ultraviolet to thermal infrared wavelengths (250 nm to 20 µm) of leaves from five temperate deciduous tree species over the 8 wk following spring leaf emergence.By contrast to reflectance at shorter wavelengths, the shape and magnitude of MIR reflectance spectra changed markedly with development. MIR spectral differences among species became more pronounced and unique as leaves matured. Comparison of reflectance spectra of intact vs dried and ground leaves points to cuticular development – and not internal structural or biochemical changes – as the main driving factor. Accompanying the observed spectral changes was a drop in thermal emissivity from about 0.99 to 0.95 over the 8 wk following leaf emergence.Emissivity changes were not large enough to substantially influence leaf temperature, but they could potentially lead to a bias in radiometrically measured temperatures of up to 3 K. Our results also pointed to the potential for using MIR spectroscopy to better understand species‐level differences in cuticular development and composition.more » « less
An official website of the United States government

