skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ASHIC: hierarchical Bayesian modeling of diploid chromatin contacts and structures
Abstract The recently developed Hi-C technique has been widely applied to map genome-wide chromatin interactions. However, current methods for analyzing diploid Hi-C data cannot fully distinguish between homologous chromosomes. Consequently, the existing diploid Hi-C analyses are based on sparse and inaccurate allele-specific contact matrices, which might lead to incorrect modeling of diploid genome architecture. Here we present ASHIC, a hierarchical Bayesian framework to model allele-specific chromatin organizations in diploid genomes. We developed two models under the Bayesian framework: the Poisson-multinomial (ASHIC-PM) model and the zero-inflated Poisson-multinomial (ASHIC-ZIPM) model. The proposed ASHIC methods impute allele-specific contact maps from diploid Hi-C data and simultaneously infer allelic 3D structures. Through simulation studies, we demonstrated that ASHIC methods outperformed existing approaches, especially under low coverage and low SNP density conditions. Additionally, in the analyses of diploid Hi-C datasets in mouse and human, our ASHIC-ZIPM method produced fine-resolution diploid chromatin maps and 3D structures and provided insights into the allelic chromatin organizations and functions. To summarize, our work provides a statistically rigorous framework for investigating fine-scale allele-specific chromatin conformations. The ASHIC software is publicly available at https://github.com/wmalab/ASHIC.  more » « less
Award ID(s):
1751317
PAR ID:
10212935
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Nucleic Acids Research
Volume:
48
Issue:
21
ISSN:
0305-1048
Page Range / eLocation ID:
e123 to e123
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract High-resolution reconstruction of spatial chromosome organizations from chromatin contact maps is highly demanded, but is hindered by extensive pairwise constraints, substantial missing data, and limited resolution and cell-type availabilities. Here, we present FLAMINGO, a computational method that addresses these challenges by compressing inter-dependent Hi-C interactions to delineate the underlying low-rank structures in 3D space, based on the low-rank matrix completion technique. FLAMINGO successfully generates 5 kb- and 1 kb-resolution spatial conformations for all chromosomes in the human genome across multiple cell-types, the largest resources to date. Compared to other methods using various experimental metrics, FLAMINGO consistently demonstrates superior accuracy in recapitulating observed structures with raises in scalability by orders of magnitude. The reconstructed 3D structures efficiently facilitate discoveries of higher-order multi-way interactions, imply biological interpretations of long-range QTLs, reveal geometrical properties of chromatin, and provide high-resolution references to understand structural variabilities. Importantly, FLAMINGO achieves robust predictions against high rates of missing data and significantly boosts 3D structure resolutions. Moreover, FLAMINGO shows vigorous cross cell-type structure predictions that capture cell-type specific spatial configurations via integration of 1D epigenomic signals. FLAMINGO can be widely applied to large-scale chromatin contact maps and expand high-resolution spatial genome conformations for diverse cell-types. 
    more » « less
  2. The spatial organization of chromatin is fundamental to gene regulation and essential for proper cellular function. The Hi-C technique remains the leading method for unraveling 3D genome structures, but the limited availability of high-resolution Hi-C data poses significant challenges for comprehensive analysis. Deep learning models have been developed to predict high-resolution Hi-C data from low-resolution counterparts. Early CNN-based models improved resolution but struggled with issues like blurring and capturing fine details. In contrast, GAN-based methods encountered difficulties in maintaining diversity and generalization. Additionally, most existing algorithms perform poorly in cross-cell line generalization, where a model trained on one cell type is used to enhance high-resolution data in another cell type. In this work, we propose DiCARN (Dilated Cascading Residual Network) to overcome these challenges and improve Hi-C data resolution. DiCARN leverages dilated convolutions and cascading residuals to capture a broader context while preserving fine-grained genomic interactions. Additionally, we incorporate DNase-seq data into our model, providing a robust framework that demonstrates superior generalizability across cell lines in high-resolution Hi-C data reconstruction. DiCARN is publicly available at https://github.com/OluwadareLab/DiCARN 
    more » « less
  3. Zhang, Zhihua (Ed.)
    Recent advances in high-throughput chromosome conformation capture (Hi-C) techniques have allowed us to map genome-wide chromatin interactions and uncover higher-order chromatin structures, thereby shedding light on the principles of genome architecture and functions. However, statistical methods for detecting changes in large-scale chromatin organization such as topologically associating domains (TADs) are still lacking. Here, we proposed a new statistical method, DiffGR, for detecting differentially interacting genomic regions at the TAD level between Hi-C contact maps. We utilized the stratum-adjusted correlation coefficient to measure similarity of local TAD regions. We then developed a nonparametric approach to identify statistically significant changes of genomic interacting regions. Through simulation studies, we demonstrated that DiffGR can robustly and effectively discover differential genomic regions under various conditions. Furthermore, we successfully revealed cell type-specific changes in genomic interacting regions in both human and mouse Hi-C datasets, and illustrated that DiffGR yielded consistent and advantageous results compared with state-of-the-art differential TAD detection methods. The DiffGR R package is published under the GNU General Public License (GPL) ≥ 2 license and is publicly available at https://github.com/wmalab/DiffGR. 
    more » « less
  4. Abstract MotivationHigh-throughput conformation capture experiments, such as Hi-C provide genome-wide maps of chromatin interactions, enabling life scientists to investigate the role of the three-dimensional structure of genomes in gene regulation and other essential cellular functions. A fundamental problem in the analysis of Hi-C data is how to compare two contact maps derived from Hi-C experiments. Detecting similarities and differences between contact maps are critical in evaluating the reproducibility of replicate experiments and for identifying differential genomic regions with biological significance. Due to the complexity of chromatin conformations and the presence of technology-driven and sequence-specific biases, the comparative analysis of Hi-C data is analytically and computationally challenging. ResultsWe present a novel method called Selfish for the comparative analysis of Hi-C data that takes advantage of the structural self-similarity in contact maps. We define a novel self-similarity measure to design algorithms for (i) measuring reproducibility for Hi-C replicate experiments and (ii) finding differential chromatin interactions between two contact maps. Extensive experimental results on simulated and real data show that Selfish is more accurate and robust than state-of-the-art methods. Availability and implementationhttps://github.com/ucrbioinfo/Selfish 
    more » « less
  5. Dunbrack, Roland L (Ed.)
    Chromatin is a polymer complex of DNA and proteins that regulates gene expression. The three-dimensional (3D) structure and organization of chromatin controls DNA transcription and replication. High-throughput chromatin conformation capture techniques generate Hi-C maps that can provide insight into the 3D structure of chromatin. Hi-C maps can be represented as a symmetric matrix A i j , where each element represents the average contact probability or number of contacts between chromatin lociiandj. Previous studies have detected topologically associating domains (TADs), or self-interacting regions in A i j within which the contact probability is greater than that outside the region. Many algorithms have been developed to identify TADs within Hi-C maps. However, most TAD identification algorithms are unable to identify nested or overlapping TADs and for a given Hi-C map there is significant variation in the location and number of TADs identified by different methods. We develop a novel method to identify TADs, KerTAD, using a kernel-based technique from computer vision and image processing that is able to accurately identify nested and overlapping TADs. We benchmark this method against state-of-the-art TAD identification methods on both synthetic and experimental data sets. We find that the new method consistently has higher true positive rates (TPR) and lower false discovery rates (FDR) than all tested methods for both synthetic and manually annotated experimental Hi-C maps. The TPR for KerTAD is also largely insensitive to increasing noise and sparsity, in contrast to the other methods. We also find that KerTAD is consistent in the number and size of TADs identified across replicate experimental Hi-C maps for several organisms. Thus, KerTAD will improve automated TAD identification and enable researchers to better correlate changes in TADs to biological phenomena, such as enhancer-promoter interactions and disease states. 
    more » « less