Abstract Predicting potential distributions of species in new areas is challenging. Physiological data can improve interpretation of predicted distributions and can be used in directed distribution models. Nonnative species provide useful case studies. Panther chameleons (Furcifer pardalis) are native to Madagascar and have established populations in Florida, USA, but standard correlative distribution modeling predicts no suitable habitat forF. pardalisthere. We evaluated commonly collected thermal traits– thermal performance, tolerance, and preference—ofF. pardalisand the acclimatization potential of these traits during exposure to naturally-occurring environmental conditions in North Central Florida. Though we observed temperature-dependent thermal performance, chameleons maintained similar thermal limits, performance, and preferences across seasons, despite long-term exposure to cool temperatures. Using the physiological data collected, we developed distribution models that varied in restriction: time-dependent exposure near and below critical thermal minima, predicted activity windows, and predicted performance thresholds. Our application of commonly collected physiological data improved interpretations on potential distributions ofF. pardalis, compared with correlative distribution modeling approaches that predicted no suitable area in Florida. These straightforward approaches can be applied to other species with existing physiological data or after brief experiments on a limited number of individuals, as demonstrated here.
more »
« less
The FrobeniusThresholds package for Macaulay2
This article describes the Macaulay2 package FrobeniusThresholds, designed to estimate and calculate F-pure thresholds, more general F-thresholds, and related numerical invariants arising in the study of singularities in prime characteristic commutative algebra.
more »
« less
- PAR ID:
- 10212977
- Date Published:
- Journal Name:
- The journal of software for algebra and geometry
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 1948-7916
- Page Range / eLocation ID:
- 25-39
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)In this work, we use a multiobjective genetic algorithm to evolve agent response thresholds for a decentralized swarm and demonstrate that swarms with evolved thresholds outperform swarms with thresholds set using other methods. In addition, we provide evidence that the effectiveness of evolved thresholds is due in part to the evolutionary process being able to find, not just good distributions of thresholds for a given task across all agents, but also good combinations of thresholds over all tasks for individual agents. Finally, we show that thresholds evolved for some problem instances can effectively generalize to other problem instances with very different task demands.more » « less
-
In this work, we investigate the application of a multi-objective genetic algorithm to the problem of task allocation in a self-organizing, decentralized, threshold-based swarm. We use a multi-objective genetic algorithm to evolve response thresholds for a simulated swarm engaged in dynamic task allocation problems: two-dimensional and three-dimensional collective tracking. We show that evolved thresholds not only outperform uniformly distributed thresholds and dynamic thresholds but achieve nearly optimal performance on a variety of tracking problem instances (target paths). More importantly, we demonstrate that thresholds evolved for some problem instances generalize to all other problem instances, eliminating the need to evolve new thresholds for each problem instance to be solved. We analyze the properties that allow these paths to serve as universal training instances and show that they are quite natural. After a priori evolution, the response thresholds in our system are static. The problem instances solved by the swarms are highly dynamic, with schedules of task demands that change over time with significant differences in rate and magnitude of change. That the swarm is able to achieve nearly optimal results refutes the common assumption that a swarm must be dynamic to perform well in a dynamic environment.more » « less
-
null (Ed.)Globally, many shallow lakes have shifted from a clear macrophyte-dominated state to a turbid phytoplankton-dominated state due to eutrophication. Such shifts are often accompanied by toxic cyanobacterial blooms, with specialized traits including buoyancy regulation and nitrogen fixation. Previous work has focused on how these traits contribute to cyanobacterial competitiveness. Yet, little is known on how these traits affect the value of nutrient loading thresholds of shallow lakes. These thresholds are defined as the nutrient loading at which lakes shift water quality state. Here, we used a modelling approach to estimate the effects of traits on nutrient loading thresholds. We incorporated cyanobacterial traits in the process-based ecosystem model PCLake+, known for its ability to determine nutrient loading thresholds. Four scenarios were simulated, including cyanobacteria without traits, with buoyancy regulation, with nitrogen fixation, and with both traits. Nutrient loading thresholds were obtained under N-limited, P-limited, and colimited conditions. Results show that cyanobacterial traits can impede lake restoration actions aimed at removing cyanobacterial blooms via nutrient loading reduction. However, these traits hardly affect the nutrient loading thresholds for clear lakes experiencing eutrophication. Our results provide references for nutrient loading thresholds and draw attention to cyanobacterial traits during the remediation of eutrophic water bodies.more » « less
-
Abstract Microplastic particles (MPs) are ubiquitous across a wide range of aquatic habitats but determining an appropriate level of risk management is hindered by a poor understanding of environmental risk. Here, we introduce a risk management framework for aquatic ecosystems that identifies four critical management thresholds, ranging from low regulatory concern to the highest level of concern where pollution control measures could be introduced to mitigate environmental emissions. The four thresholds were derived using a species sensitivity distribution (SSD) approach and the best available data from the peer-reviewed literature. This included a total of 290 data points extracted from 21 peer-reviewed microplastic toxicity studies meeting a minimal set of pre-defined quality criteria. The meta-analysis resulted in the development of critical thresholds for two effects mechanisms: food dilution with thresholds ranging from ~ 0.5 to 35 particles/L, and tissue translocation with thresholds ranging from ~ 60 to 4100 particles/L. This project was completed within an expert working group, which assigned high confidence to the management framework and associated analytical approach for developing thresholds, and very low to high confidence in the numerical thresholds. Consequently, several research recommendations are presented, which would strengthen confidence in quantifying threshold values for use in risk assessment and management. These recommendations include a need for high quality toxicity tests, and for an improved understanding of the mechanisms of action to better establish links to ecologically relevant adverse effects.more » « less
An official website of the United States government

