- Award ID(s):
- 1935028
- PAR ID:
- 10357891
- Date Published:
- Journal Name:
- Microplastics and Nanoplastics
- Volume:
- 2
- Issue:
- 1
- ISSN:
- 2662-4966
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract To assess the potential risk of microplastic exposure to humans and aquatic ecosystems, reliable toxicity data is needed. This includes a more complete foundational understanding of microplastic toxicity and better characterization of the hazards they may present. To expand this understanding, an international group of experts was convened in 2020–2021 to identify critical thresholds at which microplastics found in drinking and ambient waters present a health risk to humans and aquatic organisms. However, their findings were limited by notable data gaps in the literature. Here, we identify those shortcomings and describe four categories of research recommendations needed to address them: 1) adequate particle characterization and selection for toxicity testing; 2) appropriate experimental study designs that allow for the derivation of dose-response curves; 3) establishment of adverse outcome pathways for microplastics; and 4) a clearer understanding of microplastic exposure, particularly for human health. By addressing these four data gaps, researchers will gain a better understanding of the key drivers of microplastic toxicity and the concentrations at which adverse effects may occur, allowing a better understanding of the potential risk that microplastics exposure might pose to human and aquatic ecosystems.more » « less
-
Abstract There is definitive evidence that microplastics, defined as plastic particles less than 5 mm in size, are ubiquitous in the environment and can cause harm to aquatic organisms. These findings have prompted legislators and environmental regulators to seek out strategies for managing risk. However, microplastics are also an incredibly diverse contaminant suite, comprising a complex mixture of physical and chemical characteristics (e.g., sizes, morphologies, polymer types, chemical additives, sorbed chemicals, and impurities), making it challenging to identify which particle characteristics might influence the associated hazards to aquatic life. In addition, there is a lack of consensus on how microplastic concentrations should be reported. This not only makes it difficult to compare concentrations across studies, but it also begs the question as to which concentration metric may be most informative for hazard characterization. Thus, an international panel of experts was convened to identify 1) which concentration metrics (e.g., mass or count per unit of volume or mass) are most informative for the development of health-based thresholds and risk assessment and 2) which microplastic characteristics best inform toxicological concerns. Based on existing knowledge, it is recommended that microplastic concentrations in toxicity tests are calculated from both mass and count at minimum, though ideally researchers should report additional metrics, such as volume and surface area, which may be more informative for specific toxicity mechanisms. Regarding particle characteristics, there is sufficient evidence to conclude that particle size is a critical determinant of toxicological outcomes, particularly for the mechanisms of food dilution and tissue translocation .more » « less
-
Abstract Microplastic is a contaminant of concern worldwide. Rivers are implicated as major pathways of microplastic transport to marine and lake ecosystems, and microplastic ingestion by freshwater biota is a risk associated with microplastic contamination, but there is little research on microplastic ecology within freshwater ecosystems. Microplastic uptake by fish is likely affected by environmental microplastic abundance and aspects of fish ecology, but these relationships have rarely been addressed. We measured the abundance and composition of microplastic in fish and surface waters from 3 major tributaries of Lake Michigan, USA. Microplastic was detected in fish and surface waters from all 3 sites, but there was no correlation between microplastic concentrations in fish and surface waters. Rather, there was a significant effect of functional feeding group on microplastic concentration in fish.
Neogobius melanostomus (round goby, a zoobenthivore) had the highest concentration of gut microplastic (19 particles fish−1) compared to 10 other fish taxa measured, and had a positive linear relationship between body size and number of microplastic particles. Surface water microplastic concentrations were lowest in the most northern, forested watershed, and highest in the most southern, agriculturally dominated watershed. Results suggest microplastic pollution is common in river food webs and is connected to species feeding characteristics. Future research should focus on understanding the movement of microplastic from point-source and diffuse sources and into aquatic ecosystems, which will support pollution management efforts on inland waters. -
null (Ed.)Background: To explore existing literature on the association between environmental risk factors and delirium, and to investigate the effectiveness of environmental modifications on prevention or management of delirium. Methods: This is a scoping review of peer-reviewed studies in PubMed and the reference lists of reviewed articles. Observational studies reporting the effect of noise, light, and circadian rhythm on delirium and interventional studies assessing delirium in modified environments were reviewed. Results: 37 studies were included, 21 of which evaluated the impact of environment on delirium and 16 studied possible solutions to mitigate those impacts. Mixed findings of the reviewed studies yielded inconclusive results; a clearly delineated association between high noise levels, abnormal amounts of light exposure, and sleep disruption with delirium could not be established. The environmental interventions targeted reducing noise exposure, improving daytime and mitigating night-time light exposure to follow circadian rhythm, and promoting sleep. The overall evidence supporting effectiveness of environmental interventions was also of a low confidence; however, quiet-time protocols, earplugs, and bright light therapy showed a benefit for prevention or management of delirium. Conclusions: Environmental modifications are non-invasive, risk-free, and low-cost strategies that may be beneficial in preventing and managing delirium, especially when used as part of a multi-component plan. However, given the limited evidence-based conclusions, further high-quality and larger studies focusing on environmental modifications and delirium outcomes are strongly recommended.more » « less
-
Abstract Throughout the past decade, many studies have reported adverse effects in biota following microplastic exposure. Yet, the field is still emerging as the current understanding of microplastic toxicity is limited. At the same time, recent legislative mandates have required environmental regulators to devise strategies to mitigate microplastic pollution and develop health-based thresholds for the protection of human and ecosystem health. The current publication rate also presents a unique challenge as scientists, environmental managers, and other communities may find it difficult to keep up with microplastic research as it rapidly evolves. At present, there is no tool that compiles and synthesizes the data from these studies to allow for visualization, interpretation, or analysis. Here, we present the Toxicity of Microplastics Explorer (ToMEx), an open access database and open source accompanying R Shiny web application that enables users to upload, search, visualize, and analyze microplastic toxicity data. Though ToMEx was originally created to facilitate the development of health-based thresholds to support California legislations, maintaining the database by the greater scientific community will be invaluable to furthering research and informing policies globally. The database and web applications may be accessed at https://microplastics.sccwrp.org/ . Graphical Abstractmore » « less