- NSF-PAR ID:
- 10213067
- Date Published:
- Journal Name:
- Langmuir
- ISSN:
- 0743-7463
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Current advancements in battery technologies require electrodes to combine high-performance active materials such as Silicon (Si) with two-dimensional materials such as transition metal carbides (MXenes) for prolonged cycle stability and enhanced electrochemical performance. More so, it is the interface between these materials, which is the nexus for their applicatory success. Herein, the interface strength variations between amorphous Si and Ti 3 C 2 T x MXenes are determined as the MXene surface functional groups ( T x ) are changed using first principles calculations. Si is interfaced with three Ti 3 C 2 MXene substrates having surface −OH, −OH and −O mixed, and −F functional groups. Density functional theory (DFT) results reveal that completely hydroxylated Ti 3 C 2 has the highest interface strength of 0.6 J m −2 with amorphous Si. This interface strength value drops as the proportion of surface −O and −F groups increases. Additional analysis of electron redistribution and charge separation across the interface is provided for a complete understanding of underlying physico-chemical factors affecting the surface chemistry and resultant interface strength values. The presented comprehensive analysis of the interface aims to develop sophisticated MXene based electrodes by their targeted surface engineering.more » « less
-
Recent developments in inherently selective atomic layer deposition (ISALD) resulted in the deposition of amorphous ZrO2thin film on Si with a high growth rate (2 Å/cycle). The deposited film with a high dielectric constant via ISALD may be used in semiconductor processing. However, the amorphous nature of the film and the ZrO2–SiO2/Si interface must be assessed to ensure the prevention of leakage current. There is little information available in the literature regarding the ZrO2–SiO2/Si interface of atomic layer deposition (ALD) ZrO2film. In this study, high‐resolution transmission electron microscopy was extensively used to determine whether the film and the interface were crystalline or amorphous. It was interesting to find that a high‐energy electron beam can induce crystallinity in the amorphous as‐deposited ZrO2film within minutes of exposure. Moreover, outward diffusion of the nucleated tetragonal ZrO2away from the interface was also observed.
-
The thermal properties of Ba 3 Cu 2 Sn 3 Se 10 were investigated by measurement of the thermal conductivity and heat capacity. The chemical bonding in this diamagnetic material was investigated using structural data from Rietveld refinement and calculated electron localization. This quaternary chalcogenide is monoclinic ( P 2 1 / c ), has a large unit cell with 72 atoms in the primitive cell, and a high local coordination environment. The Debye temperature (162 K) and average speed of sound (1666 m s −1 ) are relatively low with a very small electronic contribution to the heat capacity. Ultralow thermal conductivity (0.46 W m −1 K −1 at room temperature) is attributed to the relatively weak chemical bonding and intrinsic anharmonicity, in addition to a large unit cell. This work is part of the continuing effort to explore quaternary chalcogenides with intrinsically low thermal conductivity and identify the features that result in a low thermal conductivity.more » « less
-
We investigate 29Si nuclear magnetic resonance (NMR) chemical shifts, δiso, of silicon nitride. Our goal is to relate the local structure to the NMR signal and, thus, provide the means to extract more information from the experimental 29Si NMR spectra in this family of compounds. We apply structural modeling and the gauge-included projector augmented wave (GIPAW) method within density functional theory (DFT) calculations. Our models comprise known and hypothetical crystalline Si3N4, as well as amorphous Si3N4 structures. We find good agreement with available experimental 29Si NMR data for tetrahedral Si[4] and octahedral Si[6] in crystalline Si3N4, predict the chemical shift of a trigonal-bipyramidal Si[5] to be about −120 ppm, and quantify the impact of Si-N bond lengths on 29Si δiso. We show through computations that experimental 29Si NMR data indicates that silicon dicarbodiimide, Si(NCN)2 exhibits bent Si-N-C units with angles of about 143° in its structure. A detailed investigation of amorphous silicon nitride shows that an observed peak asymmetry relates to the proximity of a fifth N neighbor in non-bonding distance between 2.5 and 2.8 Å to Si. We reveal the impact of both Si-N(H)-Si bond angle and Si-N bond length on 29Si δiso in hydrogenated silicon nitride structure, silicon diimide Si(NH)2.more » « less
-
Abstract The structural properties of co-deposited ultrathin PtSe 2 films grown at low temperatures by molecular beam epitaxy on c-plane Al 2 O 3 are studied. By simultaneously supplying a Se flux from a Knudsen cell and Pt atoms from an electron-beam evaporator, crystalline (001)-oriented PtSe 2 films were formed between 200 °C and 300 °C. The long separation between substrate and electron beam evaporator of about 60 cm ensured minimal thermal load. At optimum deposition temperatures, a ten times or even higher supply rate of Se compared to Pt ensured that the pronounced volatility of the Se was compensated and the PtSe 2 phase was formed and stabilized at the growth front. Postgrowth anneals under a Se flux was found to dramatically improve the crystalline quality of the films. Even before the postgrowth anneal in Se, the crystallinity of PtSe 2 films grown with the co-deposition method was superior to films realized by thermal assisted conversion. Postgrowth annealed films showed Raman modes with narrower peaks and more than twice the intensity. Transmission electron microscopy investigations revealed that the deposited material transitioned to a two-dimensional layered structure only after the postgrowth anneal. PtSe 2 growth was found to start as single layer islands that preferentially nucleated at atomic steps of the substrate and progressed in a layer-by-layer like fashion. A close to ideal wetting behavior resulted in coalesced PtSe 2 films after depositing about 1.5 PtSe 2 layers. Detailed Raman investigation of the observed PtSe 2 layer breathing modes of films grown under optimized co-deposition conditions revealed an interlayer coupling force constant of 5.0–5.6 × 10 19 N m −3 .more » « less