skip to main content


Search for: All records

Award ID contains: 1911900

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Selenium (Se) cathodes are an exciting emerging high energy density storage system for potassium-ion batteries (KIB), where potassiation reactions are less understood. Here, we present an atomic-level investigation of a KxSe cathode enclosed in hexagonal lattices of carbon (C) characteristic of a layered graphene matrix and multiwalled carbon nanotubes (MW-CNTs). Microstructural changes directed by the graphene–substrate in the KxSe cathode are contrasted with those in the graphene-free cathode. Graphene’s binding affinity for long-chain polyselenides (Se3 = −2.82 eV and Se2 = −2.646 eV) at low K concentrations and ability to induce enhanced reactivity between Se and K at high K concentrations are investigated. Furthermore, intercalation voltage for graphene-enclosed KxSe cathode reaction intermediates is calculated with K2Se as the final discharged product. Our results indicate a single-step reaction near a voltage of 1.55 V between K and Se cathode. Findings in the paper suggest that operating at higher voltages (∼2 V) could result in the formation of reaction intermediates where intercalation/deintercalation of K could be a challenge, and therefore cause irreversible capacity losses in the battery. The primary issue here is the modulating favorability of graphene surface toward discharging of Se cathode due to its differential preferences for K–Se reaction intermediates. A comparison with a graphene-free cathode highlights the substantial changes a van der Waals (vdW) graphene interface can bring in the atomic structure and electrochemistry of the KxSe cathode. 
    more » « less
    Free, publicly-accessible full text available August 15, 2024
  2. Abstract Designing a new heterostructure electrode has many challenges associated with interface engineering. Demanding simulation resources and lack of heterostructure databases continue to be a barrier to understanding the chemistry and mechanics of complex interfaces using simulations. Mixed-dimensional heterostructures composed of two-dimensional (2D) and three-dimensional (3D) materials are undisputed next-generation materials for engineered devices due to their changeable properties. The present work computationally investigates the interface between 2D graphene and 3D tin (Sn) systems with density functional theory (DFT) method. This computationally demanding simulation data is further used to develop machine learning (ML)-based potential energy surfaces (PES). The approach to developing PES for complex interface systems in the light of limited data and the transferability of such models has been discussed. To develop PES for graphene-tin interface systems, high-dimensional neural networks (HDNN) are used that rely on atom-centered symmetry function to represent structural information. HDNN are modified to train on the total energies of the interface system rather than atomic energies. The performance of modified HDNN trained on 5789 interface structures of graphene|Sn is tested on new interfaces of the same material pair with varying levels of structural deviations from the training dataset. Root-mean-squared error (RMSE) for test interfaces fall in the range of 0.01–0.45 eV/atom, depending on the structural deviations from the reference training dataset. By avoiding incorrect decomposition of total energy into atomic energies, modified HDNN model is shown to obtain higher accuracy and transferability despite a limited dataset. Improved accuracy in the ML-based modeling approach promises cost-effective means of designing interfaces in heterostructure energy storage systems with higher cycle life and stability. 
    more » « less
  3. null (Ed.)
    Lithium metal–selenium (Li–Se) batteries offer high volumetric energy but are limited in their cycling life and fast charge characteristics. Here a facile approach is demonstrated to synthesize hierarchically porous hollow carbon spheres that host Se (Se@HHCS) and allow for state-of-the-art electrochemical performance in a standard carbonate electrolyte (1 M LiPF 6 in 1 : 1 EC : DEC). The Se@HHCS electrodes display among the most favorable fast charge and cycling behavior reported. For example, they deliver specific capacities of 442 and 357 mA h g −1 after 1500 and 2000 cycles at 5C and 10C, respectively. At 2C, Se@HHCS delivers 558 mA h g −1 after 500 cycles, with cycling coulombic efficiency of 99.9%. Post-mortem microstructural analysis indicates that the structures remain intact during extended cycling. Per GITT analysis, Se@HHCS possesses significantly higher diffusion coefficients in both lithiation and delithiation processes as compared to the baseline. The superior performance of Se@HHCS is directly linked to its macroscopic and nanoscale pore structure: the hollow carbon sphere morphology as well as the remnant open nanoporosity accommodates the 69% volume expansion of the Li to Li 2 Se transformation, with the nanopores also providing a complementary fast ion diffusion path. 
    more » « less
  4. null (Ed.)
    Current advancements in battery technologies require electrodes to combine high-performance active materials such as Silicon (Si) with two-dimensional materials such as transition metal carbides (MXenes) for prolonged cycle stability and enhanced electrochemical performance. More so, it is the interface between these materials, which is the nexus for their applicatory success. Herein, the interface strength variations between amorphous Si and Ti 3 C 2 T x MXenes are determined as the MXene surface functional groups ( T x ) are changed using first principles calculations. Si is interfaced with three Ti 3 C 2 MXene substrates having surface −OH, −OH and −O mixed, and −F functional groups. Density functional theory (DFT) results reveal that completely hydroxylated Ti 3 C 2 has the highest interface strength of 0.6 J m −2 with amorphous Si. This interface strength value drops as the proportion of surface −O and −F groups increases. Additional analysis of electron redistribution and charge separation across the interface is provided for a complete understanding of underlying physico-chemical factors affecting the surface chemistry and resultant interface strength values. The presented comprehensive analysis of the interface aims to develop sophisticated MXene based electrodes by their targeted surface engineering. 
    more » « less
  5. null (Ed.)
    We present comprehensive first-principles density functional theory (DFT) analyses of the interfacial strength and bonding mechanisms between crystalline and amorphous selenium (Se) with graphene (Gr), a promising duo for energy storage applications. Comparative interface analyses are presented on amorphous silicon (Si) with graphene and crystalline Se with a conventional aluminum (Al) current collector. The interface strengths of monoclinic Se (0.43 J m–2) and amorphous Si with graphene (0.41 J m–2) are similar in magnitude. While both materials (c-Se, a-Si) are bonded loosely by van der Waals (vdW) forces over graphene, interfacial electron exchange is higher for a-Si/graphene. This is further elaborated by comparing the potential energy step and charge transfer (Δq) across the graphene interfaces. The interface strength of c-Se on a 3D Al current collector is higher (0.99 J m–2), suggesting a stronger adhesion. Amorphous Se with graphene has comparable interface strength (0.34 J m–2), but electron exchange in this system is slightly distinct from monoclinic Se. The electronic characteristics and bonding mechanisms are different for monoclinic and amorphous Se with graphene as they activate graphene via surface charge doping divergently. The implications of these interfacial physicochemical attributes on electrode performance have been discussed. Our findings highlight the complex electrochemical phenomena in Se interfaced with graphene, which may profoundly differ from their “free” counterparts. 
    more » « less