skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Airborne bacteria confirm the pristine nature of the Southern Ocean boundary layer
Microorganisms are ubiquitous and highly diverse in the atmosphere. Despite the potential impacts of airborne bacteria found in the lower atmosphere over the Southern Ocean (SO) on the ecology of Antarctica and on marine cloud phase, no previous region-wide assessment of bioaerosols over the SO has been reported. We conducted bacterial profiling of boundary layer shipboard aerosol samples obtained during an Austral summer research voyage, spanning 42.8 to 66.5°S. Contrary to findings over global subtropical regions and the Northern Hemisphere, where transport of microorganisms from continents often controls airborne communities, the great majority of the bacteria detected in our samples were marine, based on taxonomy, back trajectories, and source tracking analysis. Further, the beta diversity of airborne bacterial communities varied with latitude and temperature, but not with other meteorological variables. Limited meridional airborne transport restricts southward community dispersal, isolating Antarctica and inhibiting microorganism and nutrient deposition from lower latitudes to these same regions. A consequence and implication for this region’s marine boundary layer and the clouds that overtop it is that it is truly pristine, free from continental and anthropogenic influences, with the ocean as the dominant source controlling low-level concentrations of cloud condensation nuclei and ice nucleating particles.  more » « less
Award ID(s):
1660486
PAR ID:
10213076
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
117
Issue:
24
ISSN:
0027-8424
Page Range / eLocation ID:
13275 to 13282
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Oceans emit large quantities of dimethyl sulfide (DMS) to the marine atmosphere. The oxidation of DMS leads to the formation and growth of cloud condensation nuclei (CCN) with consequent effects on Earth’s radiation balance and climate. The quantitative assessment of the impact of DMS emissions on CCN concentrations necessitates a detailed description of the oxidation of DMS in the presence of existing aerosol particles and clouds. In the unpolluted marine atmosphere, DMS is efficiently oxidized to hydroperoxymethyl thioformate (HPMTF), a stable intermediate in the chemical trajectory toward sulfur dioxide (SO 2 ) and ultimately sulfate aerosol. Using direct airborne flux measurements, we demonstrate that the irreversible loss of HPMTF to clouds in the marine boundary layer determines the HPMTF lifetime ( τ HPMTF < 2 h) and terminates DMS oxidation to SO 2 . When accounting for HPMTF cloud loss in a global chemical transport model, we show that SO 2 production from DMS is reduced by 35% globally and near-surface (0 to 3 km) SO 2 concentrations over the ocean are lowered by 24%. This large, previously unconsidered loss process for volatile sulfur accelerates the timescale for the conversion of DMS to sulfate while limiting new particle formation in the marine atmosphere and changing the dynamics of aerosol growth. This loss process potentially reduces the spatial scale over which DMS emissions contribute to aerosol production and growth and weakens the link between DMS emission and marine CCN production with subsequent implications for cloud formation, radiative forcing, and climate. 
    more » « less
  2. null (Ed.)
    Long-range transport of biogenic emissions from the coast of Antarctica, precipitation scavenging, and cloud processing are the main processes that influence the observed variability in Southern Ocean (SO) marine boundary layer (MBL) condensation nuclei (CN) and cloud condensation nuclei (CCN) concentrations during the austral summer. Airborne particle measurements on the HIAPER GV from north-south transects between Hobart, Tasmania and 62°S during the Southern Ocean Clouds, Radiation Aerosol Transport Experimental Study (SOCRATES) were separated into four regimes comprising combinations of high and low concentrations of CCN and CN. In 5-day HYSPLIT back trajectories, air parcels with elevated CCN concentrations were almost always shown to have crossed the Antarctic coast, a location with elevated phytoplankton emissions relative to the rest of the SO in the region south of Australia. The presence of high CCN concentrations was also consistent with high cloud fractions over their trajectory, suggesting there was substantial growth of biogenically formed particles through cloud processing. Cases with low cloud fraction, due to the presence of cumulus clouds, had high CN concentrations, consistent with previously reported new particle formation in cumulus outflow regions. Measurements associated with elevated precipitation during the previous 1.5-days of their trajectory had low CCN concentrations indicating CCN were effectively scavenged by precipitation. A coarse-mode fitting algorithm was used to determine the primary marine aerosol (PMA) contribution which accounted for < 20% of CCN (at 0.3% supersaturation) and cloud droplet number concentrations. Vertical profiles of CN and large particle concentrations (Dp > 0.07µm) indicated that particle formation occurs more frequently above the MBL; however, the growth of recently formed particles typically occurs in the MBL, consistent with cloud processing and the condensation of volatile compound oxidation products. 
    more » « less
  3. null (Ed.)
    Abstract. Long-range transport of biogenic emissions from the coastof Antarctica, precipitation scavenging, and cloud processing are the mainprocesses that influence the observed variability in Southern Ocean (SO)marine boundary layer (MBL) condensation nuclei (CN) and cloud condensationnuclei (CCN) concentrations during the austral summer. Airborne particlemeasurements on the HIAPER GV from north–south transects between Hobart,Tasmania, and 62∘ S during the Southern Ocean Clouds, RadiationAerosol Transport Experimental Study (SOCRATES) were separated into fourregimes comprising combinations of high and low concentrations of CCN andCN. In 5 d HYSPLIT back trajectories, air parcels with elevated CCNconcentrations were almost always shown to have crossed the Antarctic coast,a location with elevated phytoplankton emissions relative to the rest of theSO in the region south of Australia. The presence of high CCN concentrationswas also consistent with high cloud fractions over their trajectory,suggesting there was substantial growth of biogenically formed particlesthrough cloud processing. Cases with low cloud fraction, due to the presenceof cumulus clouds, had high CN concentrations, consistent with previouslyreported new particle formation in cumulus outflow regions. Measurementsassociated with elevated precipitation during the previous 1.5 d of theirtrajectory had low CCN concentrations indicating CCN were effectivelyscavenged by precipitation. A coarse-mode fitting algorithm was used todetermine the primary marine aerosol (PMA) contribution, which accounted for<20 % of CCN (at 0.3 % supersaturation) and cloud dropletnumber concentrations. Vertical profiles of CN and large particleconcentrations (Dp>0.07 µm) indicated that particleformation occurs more frequently above the MBL; however, the growth ofrecently formed particles typically occurs in the MBL, consistent with cloudprocessing and the condensation of volatile compound oxidation products. CCN measurements on the R/V Investigator as part of the second Clouds, Aerosols,Precipitation, Radiation and atmospheric Composition Over the southeRn Ocean(CAPRICORN-2) campaign were also conducted during the same period as theSOCRATES study. The R/V Investigator observed elevated CCN concentrations near Australia,likely due to continental and coastal biogenic emissions. The Antarcticcoastal source of CCN from the south, CCN sources from the midlatitudes, andenhanced precipitation sink in the cyclonic circulation between the Ferreland polar cells (around 60∘ S) create opposing latitudinalgradients in the CCN concentration with an observed minimum in the SObetween 55 and 60∘ S. The SOCRATES airbornemeasurements are not influenced by Australian continental emissions butstill show evidence of elevated CCN concentrations to the south of60∘ S, consistent with biogenic coastal emissions. In addition, alatitudinal gradient in the particle composition, south of the Australianand Tasmanian coasts, is apparent in aerosol hygroscopicity derived from CCNspectra and aerosol particle size distribution. The particles are morehygroscopic to the north, consistent with a greater fraction of sea saltfrom PMA, and less hygroscopic to the south as there is more sulfate andorganic particles originating from biogenic sources in coastal Antarctica. 
    more » « less
  4. null (Ed.)
    With their extensive coverage, marine low clouds greatly impact global climate. Presently, marine low clouds are poorly represented in global climate models, and the response of marine low clouds to changes in atmospheric greenhouse gases and aerosols remains the major source of uncertainty in climate simulations. The Eastern North Atlantic (ENA) is a region of persistent but diverse subtropical marine boundary layer clouds, whose albedo and precipitation are highly susceptible to perturbations in aerosol properties. In addition, the ENA is periodically impacted by continental aerosols, making it an excellent location to study the cloud condensation nuclei (CCN) budget in a remote marine region periodically perturbed by anthropogenic emissions, and to investigate the impacts of long-range transport of aerosols on remote marine clouds. The Aerosol and Cloud Experiments in Eastern North Atlantic (ACE-ENA) campaign was motivated by the need of comprehensive in-situ measurements for improving the understanding of marine boundary layer CCN budget, cloud and drizzle microphysics, and the impact of aerosol on marine low cloud and precipitation. The airborne deployments took place from June 21 to July 20, 2017 and January 15 to February 18, 2018 in the Azores. The flights were designed to maximize the synergy between in-situ airborne measurements and ongoing long-term observations at a ground site. Here we present measurements, observation strategy, meteorological conditions during the campaign, and preliminary findings. Finally, we discuss future analyses and modeling studies that improve the understanding and representation of marine boundary layer aerosols, clouds, precipitation, and the interactions among them. 
    more » « less
  5. Airborne bacteria are an influential component of the Earth’s microbiomes, but their community structure and biogeographic distribution patterns have yet to be understood. We analyzed the bacterial communities of 370 air particulate samples collected from 63 sites around the world and constructed an airborne bacterial reference catalog with more than 27 million nonredundant 16S ribosomal RNA (rRNA) gene sequences. We present their biogeographic pattern and decipher the interlacing of the microbiome co-occurrence network with surface environments of the Earth. While the total abundance of global airborne bacteria in the troposphere (1.72 × 10 24 cells) is 1 to 3 orders of magnitude lower than that of other habitats, the number of bacterial taxa (i.e., richness) in the atmosphere (4.71 × 10 8 to 3.08 × 10 9 ) is comparable to that in the hydrosphere, and its maximum occurs in midlatitude regions, as is also observed in other ecosystems. The airborne bacterial community harbors a unique set of dominant taxa (24 species); however, its structure appears to be more easily perturbed, due to the more prominent role of stochastic processes in shaping community assembly. This is corroborated by the major contribution of surface microbiomes to airborne bacteria (averaging 46.3%), while atmospheric conditions such as meteorological factors and air quality also play a role. Particularly in urban areas, human impacts weaken the relative importance of plant sources of airborne bacteria and elevate the occurrence of potential pathogens from anthropogenic sources. These findings serve as a key reference for predicting planetary microbiome responses and the health impacts of inhalable microbiomes with future changes in the environment. 
    more » « less