skip to main content


Search for: All records

Award ID contains: 1660486

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Recent studies have suggested a correct representation of cloud phase in the Southern Ocean region is important in climate models for an accurate representation of the energy balance. Satellite retrievals indicate many of the clouds are predominantly liquid, despite their low temperatures. However, clouds containing high numbers of ice crystals have sometimes been observed in this region and implicated the secondary ice production process called rime splintering. This study re‐examines rime splintering in Southern Ocean cumuli using both a new data set and high‐resolution numerical modeling. Measurements acquired during the Southern Ocean Clouds Radiation Aerosol Transport Experimental Study (SOCRATES) provide an evaluation of the amount of ice in shallow cumuli sampled over two days in this region. The measurements sometimes exhibit seven orders of magnitude or more ice particles compared to amounts expected from measurements of ice‐nucleating particles (INP) on the same days. Cumuli containing multiple updrafts had the greatest tendency to contain high ice concentrations and meet the expected conditions for rime splintering. Idealized numerical modeling, constrained by the observations, suggests that the multiple updrafts produce more frozen raindrops/graupel, and allow them to travel through the rime‐splintering zone over an extended period of time, increasing the number of ice particles by many orders of magnitude. The extremely low number of INP in the Southern Ocean thus appears to require special conditions like multiple updrafts to help glaciate the cumuli in this region, potentially explaining the predominance of supercooled cumuli observed there.

     
    more » « less
  2. Abstract

    This study documents the presence of ice in stratocumulus clouds with cloud top temperatures (CTT) > −5 °C in the cold sector of extratropical cyclones over the Southern Ocean (SO) during ten SO Clouds, Radiation, Aerosol Transport Experimental Study (SOCRATES) research flights. Case studies are presented showing ice signatures within clouds when CTT were between −2 and −5°C, evidenced in Doppler radar radial velocity changes observed during high‐altitude flight legs as ice particles melted across the 0°C isotherm. Ice on these legs was found to contribute to precipitation 3.8% of the time from clouds with −5°C < CTT <0°C. Clouds observed with a distinct melting level on high‐altitude flight legs overall had greater cloud depths, tops with higher reflectivities, and higher linear depolarization ratios, compared to clouds without a melting level. In situ flight legs were also analyzed when Himawari‐8 CTT were between 0 and −5°C and the aircraft was sampling in cloud within that temperature range. It was found that 3% of clouds sampled in situ with −5°C < CTT <0°C were mixed phase with a mean number concentration of 2.35 L−1for nonspherical particles with maximum diameters >100 μm and 1.13 L−1for nonspherical particles with maximum diameters >200 μm.

     
    more » « less
  3. Abstract

    Stratocumulus clouds over the Southern Ocean have fewer droplets and are more likely to exist in the predominately supercooled phase than clouds at similar temperatures over northern oceans. One likely reason is that this region has few continental and anthropogenic sources of cloud‐nucleating particles that can form droplets and ice. In this work, we present an overview of aerosol particle types over the Southern Ocean, including new measurements made below, in and above clouds in this region. These measurements and others indicate that biogenic sulfur‐based particles >0.1 μm diameter contribute the majority of cloud condensation nuclei number concentrations in summer. Ice nucleating particles tend to have more organic components, likely from sea‐spray. Both types of cloud nucleating particles may increase in a warming climate likely to have less sea ice, more phytoplankton activity, and stronger winds over the Southern Ocean near Antarctica. Taken together, clouds over the Southern Ocean may become more reflective and partially counter the region's expected albedo decrease due to diminishing sea ice. However, detailed modeling studies are needed to test this hypothesis due to the complexity of ocean‐cloud‐climate feedbacks in the region.

     
    more » « less
  4. Abstract

    An atmospheric river affecting Australia and the Southern Ocean on 28–29 January 2018 during the Southern Ocean Clouds, Radiation, Aerosol Transport Experimental Study (SOCRATES) is analyzed using nadir‐pointing W‐band cloud radar measurements and in situ microphysical measurements from a Gulfstream‐V aircraft. The AR had a two‐band structure, with the westernmost band associated with a cold frontal boundary. The bands were primarily stratiform with distinct radar bright banding. The microphysical evolution of precipitation is described in the context of the tropical‐ and midlatitude‐sourced moisture zones above and below the 0°C isotherm, respectively, identified in Part I. In the tropical‐sourced moisture zone, ice particles at temperatures less than −8°C had concentrations on the order of 10 L−1, with habits characteristic of lower temperatures, while between −8°C and −4°C, an order of magnitude increase in ice particle concentrations was observed, with columnar habits consistent with Hallett‐Mossop secondary ice formation. Ice particles falling though the 0°C level into the midlatitude‐sourced moisture region and melting provided “seed” droplets from which subsequent growth by collision‐coalescence occurred. In this region, raindrops grew to sizes of 3 mm and precipitation rates averaged 16 mm hr−1.

     
    more » « less
  5. Abstract

    The abundance and sources of ice‐nucleating particles, particles required for heterogeneous ice nucleation, are long‐standing sources of uncertainty in quantifying aerosol‐cloud interactions. In this study, we demonstrate near closure between immersion freezing ice‐nucleating particle number concentration (nINPs) observations andnINPscalculated from simulated sea spray aerosol and dust. The Community Atmospheric Model with constrained meteorology was used to simulate aerosol concentrations at the Mace Head Research Station (North Atlantic) and over the Southern Ocean to the south of Tasmania (Clouds, Aerosols, Precipitation, Radiation, and atmospherIc Composition Over the southeRN ocean campaign). Model‐predictednINPswere within a factor of 10 ofnINPsobserved with an off‐line ice spectrometer at Mace Head Research Station and Clouds, Aerosols, Precipitation, Radiation, and atmospherIc Composition Over the southeRN ocean campaign, for 93% and 69% of observations, respectively. Simulated vertical profiles ofnINPsreveal that transported dust may be critical tonINPsin remote regions and that sea spray aerosol may be the dominate contributor to primary ice nucleation in Southern Ocean low‐level mixed‐phase clouds.

     
    more » « less
  6. Abstract To resolve the various types of biological ice nuclei (IN) with atmospheric models, an extension of the empirical parameterization (EP) (Phillips et al. 2008; 2013) is proposed to predict the active IN from multiple groups of primary biological aerosol particles (PBAPs). Our approach is to utilize coincident observations of PBAP sizes, concentrations, biological composition, and ice-nucleating ability. The parameterization organizes the PBAPs into five basic groups: fungal spores, bacteria, pollen, viral particles, plant/animal detritus, algae, and their respective fragments. This new biological component of the EP was constructed by fitting predicted concentrations of PBAP IN to those observed at the Amazon Tall Tower Observatory (ATTO) site located in the central Amazon. The fitting parameters for pollen and viral particles, plant/animal detritus, which are much less active as IN than fungal and bacterial groups, are constrained based on their ice nucleation activity from the literature. The parameterization has empirically derived dependencies on the surface area of each group (except algae), and the effects of variability in their mean sizes and number concentrations are represented via their influences on the surface area. The concentration of active algal IN is estimated from literature-based measurements. Predictions of this new biological component of the EP are consistent with previous laboratory and field observations not used in its construction. The EP scheme was implemented in a 0D parcel model. It confirms that biological IN account for most of the total IN activation at temperatures warmer than −20°C and at colder temperatures dust and soot become increasingly more important to ice nucleation. 
    more » « less
  7. null (Ed.)
  8. Abstract. Due to its remote location and extreme weather conditions, atmospheric in situmeasurements are rare in the Southern Ocean. As a result, aerosol–cloudinteractions in this region are poorly understood and remain a major source ofuncertainty in climate models. This, in turn, contributes substantially topersistent biases in climate model simulations such as the well-known positiveshortwave radiation bias at the surface, as well as biases in numericalweather prediction models and reanalyses. It has been shown in previousstudies that in situ and ground-based remote sensing measurements across theSouthern Ocean are critical for complementing satellite data sets due to theimportance of boundary layer and low-level cloud processes. These processesare poorly sampled by satellite-based measurements and are often obscured bymultiple overlying cloud layers. Satellite measurements also do not constrainthe aerosol–cloud processes very well with imprecise estimation of cloudcondensation nuclei. In this work, we present a comprehensive set of ship-basedaerosol and meteorological observations collected on the 6-weekSouthern Ocean Ross Sea Marine Ecosystem and Environment voyage(TAN1802) voyage of RV Tangaroa across the Southern Ocean, from Wellington, New Zealand, tothe Ross Sea, Antarctica. The voyage was carried out from 8 February to21 March 2018. Many distinct, but contemporaneous, data sets were collectedthroughout the voyage. The compiled data sets include measurements from arange of instruments, such as (i) meteorological conditions at the sea surfaceand profile measurements; (ii) the size and concentration of particles; (iii)trace gases dissolved in the ocean surface such as dimethyl sulfide andcarbonyl sulfide; (iv) and remotely sensed observations of low clouds. Here,we describe the voyage, the instruments, and data processing, and provide a briefoverview of some of the data products available. We encourage the scientificcommunity to use these measurements for further analysis and model evaluationstudies, in particular, for studies of Southern Ocean clouds, aerosol, andtheir interaction. The data sets presented in this study are publiclyavailable at https://doi.org/10.5281/zenodo.4060237 (Kremser et al., 2020). 
    more » « less
  9. null (Ed.)
    Abstract Weather and climate models are challenged by uncertainties and biases in simulating Southern Ocean (SO) radiative fluxes that trace to a poor understanding of cloud, aerosol, precipitation and radiative processes, and their interactions. Projects between 2016 and 2018 used in-situ probes, radar, lidar and other instruments to make comprehensive measurements of thermodynamics, surface radiation, cloud, precipitation, aerosol, cloud condensation nuclei (CCN) and ice nucleating particles over the SO cold waters, and in ubiquitous liquid and mixed-phase cloudsnucleating particles over the SO cold waters, and in ubiquitous liquid and mixed-phase clouds common to this pristine environment. Data including soundings were collected from the NSF/NCAR G-V aircraft flying north-south gradients south of Tasmania, at Macquarie Island, and on the RV Investigator and RSV Aurora Australis. Synergistically these data characterize boundary layer and free troposphere environmental properties, and represent the most comprehensive data of this type available south of the oceanic polar front, in the cold sector of SO cyclones, and across seasons. Results show a largely pristine environments with numerous small and few large aerosols above cloud, suggesting new particle formation and limited long-range transport from continents, high variability in CCN and cloud droplet concentrations, and ubiquitous supercooled water in thin, multi-layered clouds, often with small-scale generating cells near cloud top. These observations demonstrate how cloud properties depend on aerosols while highlighting the importance of confirmed low clouds were responsible for radiation biases. The combination of models and observations is examining how aerosols and meteorology couple to control SO water and energy budgets. 
    more » « less