High pressure and temperature experiments were carried out on the oxide mixtures corresponding to the bridgmanite stoichiometry under the hydrous shallow lower mantle conditions (24–25 GPa and 1673–1873 K with 5–10 wt. % of water in the starting material). Oxide mixtures investigated correspond to MgSiO3, (Mg, Fe)SiO3, (Mg, Al, Si)O3, and (Mg, Fe, Al, Si)O3. Melting was observed in all runs. Partitioning of various elements, including Mg, Fe, Si, and H is investigated. Melting under hydrous lower mantle conditions leads to increased (Mg + Fe)O/SiO2in the melt compared to the residual solids. The residual solids often contain a large amount of stishovite, and the melt contains higher (Mg,Fe)O/SiO2ratio than the initial material. (Mg + Fe)O‐rich hydrous melt could explain the low‐velocity anomalies observed in the shallow lower mantle and a large amount of stishovite in the residual solid may be responsible for the scattering of seismic waves in the mid‐lower mantle and may explain the “stishovite paradox. Since stishovite‐rich materials are formed only when silica‐rich source rock (MORB) is melted (not a typical peridotitic rock [bulk silicate Earth]), seismic scattering in the lower mantle provides a clue on the circulation of subducted MORB materials. To estimate hydrogen content, we use a new method of estimating the water content of unquenchable melts, and also propose a new interpretation of the significance of superhydrous phase B inclusions in bridgmanite. The results provide revised values of water partitioning between solid minerals and hydrous melts that are substantially higher than previous estimates.
The essential data for interior and thermal evolution models of the Earth and super-Earths are the density and melting of mantle silicate under extreme conditions. Here, we report an unprecedently high melting temperature of MgSiO3at 500 GPa by direct shockwave loading of pre-synthesized dense MgSiO3(bridgmanite) using the Z Pulsed Power Facility. We also present the first high-precision density data of crystalline MgSiO3to 422 GPa and 7200 K and of silicate melt to 1254 GPa. The experimental density measurements support our density functional theory based molecular dynamics calculations, providing benchmarks for theoretical calculations under extreme conditions. The excellent agreement between experiment and theory provides a reliable reference density profile for super-Earth mantles. Furthermore, the observed upper bound of melting temperature, 9430 K at 500 GPa, provides a critical constraint on the accretion energy required to melt the mantle and the prospect of driving a dynamo in massive rocky planets.
more » « less- Award ID(s):
- 1619868
- NSF-PAR ID:
- 10213305
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Super‐Earths ranging up to 10 Earth masses (ME) with Earth‐like density are common among the observed exoplanets thus far, but their measured masses and radii do not uniquely elucidate their internal structure. Exploring the phase transitions in the Mg‐silicates that define the mantle‐structure of super‐Earths is critical to characterizing their interiors, yet the relevant terapascal conditions are experimentally challenging for direct structural analysis. Here we investigated the crystal chemistry of Fe3O4as a low‐pressure analog to Mg2SiO4between 45–115 GPa and up to 3000 K using powder and single crystal X‐ray diffraction in the laser‐heated diamond anvil cell. Between 60–115 GPa and above 2000 K, Fe3O4adopts an 8‐fold coordinated Th3P4‐type structure (
I ‐43d,Z = 4) with disordered Fe2+and Fe3+into one metal site. This Fe‐oxide phase is isostructural with that predicted for Mg2SiO4above 500 GPa in super‐Earth mantles and suggests that Mg2SiO4can incorporate both ferric and ferrous iron at these conditions. The pressure‐volume behavior observed in this 8‐fold coordinated Fe3O4indicates a maximum 4% density increase across the 6‐ to 8‐fold coordination transition in the analog Mg‐silicate. Reassessment of the FeO—Fe3O4fugacity buffer considering the Fe3O4phase relationships identified in this study reveals that increasing pressure and temperature to 120 GPa and 3000 K in Earth and planetary mantles drives iron toward oxidation. -
Abstract Silicate liquids are important agents of thermal evolution, yet their thermal conductivity is largely unknown. Here, we determine the thermal conductivity of a silicate liquid by combining the Green‐Kubo method with a machine learning potential of
ab initio quality over the entire pressure regime of the mantle. We find that the thermal conductivity of MgSiO3liquid is 1.1 W m−1 K−1at the 1 bar melting point, and 4.0 W m−1 K−1at core‐mantle boundary conditions. The thermal conductivity increases with compression, while remaining nearly constant on isochoric heating. The pressure dependence arises from the increasing bulk modulus on compression, and the weak temperature dependence arises from the saturation of the phonon mean free path due to structural disorder. The thermal conductivity of silicate liquids is less than that of ambient mantle, a contrast that may be important for understanding melt generation, and heat flux from the core. -
Abstract Silicate melts have served as transport agents in the chemical and thermal evolution of Earth. Molecular dynamics simulations based on a deep neural network potential trained by
ab initio data show that the viscosity of MgSiO3melt decreases with increasing pressure at low pressures (up to ∼6 GPa) before it starts to increase with further compression. The melt electrical conductivity also behaves anomalously; first increasing and then decreasing with pressure. The melt accumulation implied by the viscosity turnover at ∼23 GPa along mantle liquidus offers an explanation for the low‐velocity zone at the 660‐km discontinuity. The increase in electrical conductivity up to ∼50 GPa may contribute to the steep rise of Earth's electrical conductivity profiles derived from magnetotelluric observations. Our results also suggest that small fraction of melts could give rise to detectable bulk conductivity in deeper parts of the mantle. -
Abstract Density of silicate melt dictates melt migration and establishes the gross structure of Earth's interior. However, due to technical challenges, the melt density of relevant compositions is poorly known at deep mantle conditions. Particularly, water may be dissolved in such melts in large amounts and can potentially affect their density at extreme pressure and temperature conditions. Here we perform first‐principles molecular dynamics simulations to evaluate the density of Fe‐rich, eutectic‐like silicate melt (
E melt) with varying water content up to about 12 wt %. Our results show that water mixes nearly ideally with the nonvolatile component in silicate melt and can decrease the melt density significantly. They also suggest that hydrous melts can be gravitationally stable in the lowermost mantle given its likely high iron content, providing a mechanism to explain seismically slow and dense layers near the core‐mantle boundary.