Abstract High pressure and temperature experiments were carried out on the oxide mixtures corresponding to the bridgmanite stoichiometry under the hydrous shallow lower mantle conditions (24–25 GPa and 1673–1873 K with 5–10 wt. % of water in the starting material). Oxide mixtures investigated correspond to MgSiO3, (Mg, Fe)SiO3, (Mg, Al, Si)O3, and (Mg, Fe, Al, Si)O3. Melting was observed in all runs. Partitioning of various elements, including Mg, Fe, Si, and H is investigated. Melting under hydrous lower mantle conditions leads to increased (Mg + Fe)O/SiO2in the melt compared to the residual solids. The residual solids often contain a large amount of stishovite, and the melt contains higher (Mg,Fe)O/SiO2ratio than the initial material. (Mg + Fe)O‐rich hydrous melt could explain the low‐velocity anomalies observed in the shallow lower mantle and a large amount of stishovite in the residual solid may be responsible for the scattering of seismic waves in the mid‐lower mantle and may explain the “stishovite paradox. Since stishovite‐rich materials are formed only when silica‐rich source rock (MORB) is melted (not a typical peridotitic rock [bulk silicate Earth]), seismic scattering in the lower mantle provides a clue on the circulation of subducted MORB materials. To estimate hydrogen content, we use a new method of estimating the water content of unquenchable melts, and also propose a new interpretation of the significance of superhydrous phase B inclusions in bridgmanite. The results provide revised values of water partitioning between solid minerals and hydrous melts that are substantially higher than previous estimates.
more »
« less
Melting and density of MgSiO3 determined by shock compression of bridgmanite to 1254GPa
Abstract The essential data for interior and thermal evolution models of the Earth and super-Earths are the density and melting of mantle silicate under extreme conditions. Here, we report an unprecedently high melting temperature of MgSiO3at 500 GPa by direct shockwave loading of pre-synthesized dense MgSiO3(bridgmanite) using the Z Pulsed Power Facility. We also present the first high-precision density data of crystalline MgSiO3to 422 GPa and 7200 K and of silicate melt to 1254 GPa. The experimental density measurements support our density functional theory based molecular dynamics calculations, providing benchmarks for theoretical calculations under extreme conditions. The excellent agreement between experiment and theory provides a reliable reference density profile for super-Earth mantles. Furthermore, the observed upper bound of melting temperature, 9430 K at 500 GPa, provides a critical constraint on the accretion energy required to melt the mantle and the prospect of driving a dynamo in massive rocky planets.
more »
« less
- Award ID(s):
- 1619868
- PAR ID:
- 10213305
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Thermophysical properties of silicate liquids under extreme conditions are critical for understanding the accretion and evolution of super‐Earths and sub‐Neptunes. The thermal equation of state and viscosity of silicate liquids determine the adiabatic profiles and dynamics of magma oceans. However, these properties are challenging to constrain at elevated pressures in experiments. Here, we perform ab initio molecular dynamics simulations of MgSiO3liquid across a wide range of pressures (0–1,200 GPa) and temperatures (2200–14000 K) and analyze its structure, the Grüneisen parameter, and viscosity. Our results reveal the clear temperature and pressure dependence of the Grüneisen parameter, which varies synchronously with the O‐O coordination number. The Grüneisen parameter shifts from positive to negative temperature dependence between ∼20 and 70 GPa, corresponding to a peak in the O‐O coordination number and SiO5abundance. Initially, the Grüneisen parameter increases with pressure and then decreases, showing limited temperature dependence above ∼300 GPa, where its behavior resembles that of solids. Furthermore, we determine the adiabat and viscosity profiles of magma oceans in super‐Earths and sub‐Neptunes. The results suggest that the mantles of super‐Earths and sub‐Neptunes may solidify either from the bottom up or at pressures of ∼120–150 GPa, depending on the curvature of the mantle melting line. The low viscosity of magma oceans likely enhances convective currents and facilitate efficient differentiation. These thermophysical properties, now quantified up to terapascal pressures, enable updates to the mass‐radius relation of magma ocean exoplanets, showing notable differences compared to their solid counterparts.more » « less
-
Abstract Silicate liquids are important agents of thermal evolution, yet their thermal conductivity is largely unknown. Here, we determine the thermal conductivity of a silicate liquid by combining the Green‐Kubo method with a machine learning potential ofab initioquality over the entire pressure regime of the mantle. We find that the thermal conductivity of MgSiO3liquid is 1.1 W m−1 K−1at the 1 bar melting point, and 4.0 W m−1 K−1at core‐mantle boundary conditions. The thermal conductivity increases with compression, while remaining nearly constant on isochoric heating. The pressure dependence arises from the increasing bulk modulus on compression, and the weak temperature dependence arises from the saturation of the phonon mean free path due to structural disorder. The thermal conductivity of silicate liquids is less than that of ambient mantle, a contrast that may be important for understanding melt generation, and heat flux from the core.more » « less
-
Abstract Silicate melts have served as transport agents in the chemical and thermal evolution of Earth. Molecular dynamics simulations based on a deep neural network potential trained byab initiodata show that the viscosity of MgSiO3melt decreases with increasing pressure at low pressures (up to ∼6 GPa) before it starts to increase with further compression. The melt electrical conductivity also behaves anomalously; first increasing and then decreasing with pressure. The melt accumulation implied by the viscosity turnover at ∼23 GPa along mantle liquidus offers an explanation for the low‐velocity zone at the 660‐km discontinuity. The increase in electrical conductivity up to ∼50 GPa may contribute to the steep rise of Earth's electrical conductivity profiles derived from magnetotelluric observations. Our results also suggest that small fraction of melts could give rise to detectable bulk conductivity in deeper parts of the mantle.more » « less
-
Abstract Seismic and magnetotelluric studies suggest hydrous silicate melts atop the 410 km discontinuity form 30–100 km thick layers. Importantly, in some regions, two layers are observed. These stagnant layers are related to their comparable density to the surrounding mantle, but their formation mechanisms and detailed structures remain unclear. Here we report a large decrease of silicate melt viscosity at ~14 GPa, from 96(5) to 11.7(6) mPa⋅s, as water content increases from 15.5 to 31.8 mol% H₂O. Such low viscosities facilitate rapid segregation of melt, which would typically prevent thick layer accumulation. Our 1D finite element simulations show that continuous dehydration melting of upwelling mantle material produces a primary melt layer above 410 km and a secondary layer at the depth of equal mantle-melt densities. These layers can merge into a single thick layer under low density contrasts or high upwelling rates, explaining both melt doublets and thick single layers.more » « less
An official website of the United States government
