skip to main content


Title: Fast, multiplane line-scan confocal microscopy using axially distributed slits

The inherent constraints on resolution, speed and field of view have hindered the development of high-speed, three-dimensional microscopy techniques over large scales. Here, we present a multiplane line-scan imaging strategy, which uses a series of axially distributed reflecting slits to probe different depths within a sample volume. Our technique enables the simultaneous imaging of an optically sectioned image stack with a single camera at frame rates of hundreds of hertz, without the need for axial scanning. We demonstrate the applicability of our system to monitor fast dynamics in biological samples by performing calcium imaging of neuronal activity in mouse brains and voltage imaging of cardiomyocytes in cardiac samples.

 
more » « less
Award ID(s):
1647837
NSF-PAR ID:
10213347
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Biomedical Optics Express
Volume:
12
Issue:
3
ISSN:
2156-7085
Page Range / eLocation ID:
Article No. 1339
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Traditional miniaturized fluorescence microscopes are critical tools for modern biology. Invariably, they struggle to simultaneously image with a high spatial resolution and a large field of view (FOV). Lensless microscopes offer a solution to this limitation. However, real-time visualization of samples is not possible with lensless imaging, as image reconstruction can take minutes to complete. This poses a challenge for usability, as real-time visualization is a crucial feature that assists users in identifying and locating the imaging target. The issue is particularly pronounced in lensless microscopes that operate at close imaging distances. Imaging at close distances requires shift-varying deconvolution to account for the variation of the point spread function (PSF) across the FOV. Here, we present a lensless microscope that achieves real-time image reconstruction by eliminating the use of an iterative reconstruction algorithm. The neural network-based reconstruction method we show here, achieves more than 10000 times increase in reconstruction speed compared to iterative reconstruction. The increased reconstruction speed allows us to visualize the results of our lensless microscope at more than 25 frames per second (fps), while achieving better than 7 µm resolution over a FOV of 10 mm2. This ability to reconstruct and visualize samples in real-time empowers a more user-friendly interaction with lensless microscopes. The users are able to use these microscopes much like they currently do with conventional microscopes.

     
    more » « less
  2. Confocal microscopy is a standard approach for obtaining volumetric images of a sample with high axial and lateral resolution, especially when dealing with scattering samples. Unfortunately, a confocal microscope is quite expensive compared to traditional microscopes. In addition, the point scanning in confocal microscopy leads to slow imaging speed and photobleaching due to the high dose of laser energy. In this paper, we demonstrate how the advances in machine learning can be exploited to teach a traditional wide-field microscope, one that’s available in every lab, into producing 3D volumetric images like a confocal microscope. The key idea is to obtain multiple images with different focus settings using a wide-field microscope and use a 3D generative adversarial network (GAN) based neural network to learn the mapping between the blurry low-contrast image stacks obtained using a wide-field microscope and the sharp, high-contrast image stacks obtained using a confocal microscope. After training the network with widefield-confocal stack pairs, the network can reliably and accurately reconstruct 3D volumetric images that rival confocal images in terms of its lateral resolution, z-sectioning and image contrast. Our experimental results demonstrate generalization ability to handle unseen data, stability in the reconstruction results, high spatial resolution even when imaging thick (∼40 microns) highly-scattering samples. We believe that such learning-based microscopes have the potential to bring confocal imaging quality to every lab that has a wide-field microscope.

     
    more » « less
  3. Illuminating or imaging samples from a broad angular range is essential in a wide variety of computational 3D imaging and resolution-enhancement techniques, such as optical projection tomography, optical diffraction tomography, synthetic aperture microscopy, Fourier ptychographic microscopy, structured illumination microscopy, photogrammetry, and optical coherence refraction tomography. The wider the angular coverage, the better the resolution enhancement or 3D-resolving capabilities. However, achieving such angular ranges is a practical challenge, especially when approaching±<#comment/>90∘<#comment/>or beyond. Often, researchers resort to expensive, proprietary high numerical aperture (NA) objectives or to rotating the sample or source-detector pair, which sacrifices temporal resolution or perturbs the sample. Here, we propose several new strategies for multiangle imaging approaching 4pi steradians using concave parabolic or ellipsoidal mirrors and fast, low rotational inertia scanners, such as galvanometers. We derive theoretically and empirically relations between a variety of system parameters (e.g.,  NA, wavelength, focal length, telecentricity) and achievable fields of view (FOVs) and importantly show that intrinsic tilt aberrations donotrestrict FOV for many multiview imaging applications, contrary to conventional wisdom. Finally, we present strategies for avoiding spherical aberrations at obliquely illuminated flat boundaries. Our simple designs allow for high-speed multiangle imaging for microscopic, mesoscopic, and macroscopic applications.

     
    more » « less
  4. Abstract

    Deep learning-based image reconstruction methods have achieved remarkable success in phase recovery and holographic imaging. However, the generalization of their image reconstruction performance to new types of samples never seen by the network remains a challenge. Here we introduce a deep learning framework, termed Fourier Imager Network (FIN), that can perform end-to-end phase recovery and image reconstruction from raw holograms of new types of samples, exhibiting unprecedented success in external generalization. FIN architecture is based on spatial Fourier transform modules that process the spatial frequencies of its inputs using learnable filters and a global receptive field. Compared with existing convolutional deep neural networks used for hologram reconstruction, FIN exhibits superior generalization to new types of samples, while also being much faster in its image inference speed, completing the hologram reconstruction task in ~0.04 s per 1 mm2of the sample area. We experimentally validated the performance of FIN by training it using human lung tissue samples and blindly testing it on human prostate, salivary gland tissue and Pap smear samples, proving its superior external generalization and image reconstruction speed. Beyond holographic microscopy and quantitative phase imaging, FIN and the underlying neural network architecture might open up various new opportunities to design broadly generalizable deep learning models in computational imaging and machine vision fields.

     
    more » « less
  5. Point scanning imaging systems (e.g. scanning electron or laser scanning confocal microscopes) are perhaps the most widely used tools for high resolution cellular and tissue imaging. Like all other imaging modalities, the resolution, speed, sample preservation, and signal-to-noise ratio (SNR) of point scanning systems are difficult to optimize simultaneously. In particular, point scanning systems are uniquely constrained by an inverse relationship between imaging speed and pixel resolution. Here we show these limitations can be miti gated via the use of deep learning-based super-sampling of undersampled images acquired on a point-scanning system, which we termed point -scanning super-resolution (PSSR) imaging. Oversampled ground truth images acquired on scanning electron or Airyscan laser scanning confocal microscopes were used to generate semi-synthetictrain ing data for PSSR models that were then used to restore undersampled images. Remarkably, our EM PSSR model was able to restore undersampled images acquired with different optics, detectors, samples, or sample preparation methods in other labs . PSSR enabled previously unattainable xy resolution images with our serial block face scanning electron microscope system. For fluorescence, we show that undersampled confocal images combined with a multiframe PSSR model trained on Airyscan timelapses facilitates Airyscan-equivalent spati al resolution and SNR with ~100x lower laser dose and 16x higher frame rates than corresponding high-resolution acquisitions. In conclusion, PSSR facilitates point-scanning image acquisition with otherwise unattainable resolution, speed, and sensitivity. 
    more » « less