skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 13, 2026

Title: Fast photostable expansion microscopy using QDots and deconvolution
Expansion microscopy (ExM) enables sub-diffraction imaging by physically expanding labeled tissue samples. This increases the tissue volume relative to the instrument point spread function (PSF), thereby improving the effective resolution by reported factors of 4 - 20X. However, this volume increase dilutes the fluorescence signal, reducing both signal-to-noise ratio (SNR) and acquisition speed. This paper proposes and validates a method for mitigating these challenges. We overcame the limitations of ExM by developing a fast photo-stable protocol to enable scalable widefield three-dimensional imaging with ExM. We combined widefield imaging with quantum dots (QDots). Widefield imaging provides a significantly faster acquisition of a single field-of-view (FOV). However, the uncontrolled incoherent illumination induces photobleaching. We mitigated this challenge using QDots, which exhibit a long fluorescence lifetime and improved photostability. First, we developed a protocol for QDot labeling. Next, we utilized widefield imaging to obtain 3D image stacks and applied deconvolution, which is feasible due to reduced scattering in ExM samples. We show that increased transparency, which is a side-effect of ExM, enables widefield deconvolution, dramatically reducing the acquisition time for three-dimensional images compared to laser scanning microscopy. The proposed QDot labeling protocol is compatible with ExM and provides enhanced photostability compared to traditional fluorescent dyes. Widefield imaging significantly improves SNR and acquisition speed compared to conventional confocal microscopy. Combining widefield imaging with QDot labeling and deconvolution has the potential to be applied to ExM for faster imaging of large three-dimensional samples with improved SNR.  more » « less
Award ID(s):
1943455
PAR ID:
10618662
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Pesce, Luca
Publisher / Repository:
Public Library of Science
Date Published:
Journal Name:
PLOS One
Volume:
20
Issue:
6
ISSN:
1932-6203
Page Range / eLocation ID:
e0325155
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract We demonstrate that structured illumination microscopy has the potential to enhance fluorescence lifetime imaging microscopy (FLIM) as an early detection method for oral squamous cell carcinoma. FLIM can be used to monitor or detect changes in the fluorescence lifetime of metabolic cofactors (e.g. NADH and FAD) associated with the onset of carcinogenesis. However, out of focus fluorescence often interferes with this lifetime measurement. Structured illumination fluorescence lifetime imaging (SI-FLIM) addresses this by providing depth-resolved lifetime measurements, and applied to oral mucosa, can localize the collected signal to the epithelium. In this study, the hamster model of oral carcinogenesis was used to evaluate SI-FLIM in premalignant and malignant oral mucosa. Cheek pouches were imaged in vivo and correlated to histopathological diagnoses. The potential of NADH fluorescence signal and lifetime, as measured by widefield FLIM and SI-FLIM, to differentiate dysplasia (pre-malignancy) from normal tissue was evaluated. ROC analysis was carried out with the task of discriminating between normal tissue and mild dysplasia, when changes in fluorescence characteristics are localized to the epithelium only. The results demonstrate that SI-FLIM (AUC = 0.83) is a significantly better (p-value = 0.031) marker for mild dysplasia when compared to widefield FLIM (AUC = 0.63). 
    more » « less
  2. Fluorescence imaging microscopy has traditionally been used because of the high specificity that is achievable through fluorescence labeling techniques and optical filtering. When combined with spectral imaging technologies, fluorescence microscopy can allow for quantitative identification of multiple fluorescent labels. We are working to develop a new approach for spectral imaging that samples the fluorescence excitation spectrum and may provide increased signal strength. The enhanced signal strength may be used to provide increased spectral sensitivity and spectral, spatial, and temporal sampling capabilities. A proof of concept excitation scanning system has shown over 10-fold increase in signal to noise ratio compared to emission scanning hyperspectral imaging. Traditional hyperspectral imaging fluorescence microscopy methods often require minutes of acquisition time. We are developing a new configuration that utilizes solid state LEDs to combine multiple illumination wavelengths in a 2-mirror assembly to overcome the temporal limitations of traditional hyperspectral imaging. We have previously reported on the theoretical performance of some of the aspects of this system by using optical ray trace modeling. Here, we present results from prototyping and benchtop testing of the system, including assembly, optical characterization, and data collection. This work required the assembly and characterization of a novel excitation scanning hyperspectral microscopy system, containing 12 LEDs ranging from 365- 425 nm, 12 lenses, a spherical mirror, and a flat mirror. This unique approach may reduce the long image acquisition times seen in traditional hyperspectral imaging while maintaining high specificity and sensitivity for multilabel identification and autofluorescence imaging in real time. 
    more » « less
  3. Light-field fluorescence microscopy can record large-scale population activity of neurons expressing genetically-encoded fluorescent indicators within volumes of tissue. Conventional light-field microscopy (LFM) suffers from poor lateral resolution when using wide-field illumination. Here, we demonstrate a structured-illumination light-field microscopy (SI-LFM) modality that enhances spatial resolution over the imaging volume. This modality increases resolution by illuminating sample volume with grating patterns that are invariant over the axial direction. The size of the SI-LFM point-spread-function (PSF) was approximately half the size of the conventional LFM PSF when imaging fluorescent beads. SI-LFM also resolved fine spatial features in lens tissue samples and fixed mouse retina samples. Finally, SI-LFM reported neural activity with approximately three times the signal-to-noise ratio of conventional LFM when imaging live zebrafish expressing a genetically encoded calcium sensor. 
    more » « less
  4. Abstract Visualizing fluorescence‐tagged molecules is a powerful strategy that can reveal the complex dynamics of the cell. One robust and broadly applicable method is immunofluorescence microscopy, in which a fluorescence‐labeled antibody binds the molecule of interest and then the location of the antibody is determined by fluorescence microscopy. The effective application of this technique includes several considerations, such as the nature of the antigen, specificity of the antibody, permeabilization and fixation of the specimen, and fluorescence imaging of the cell. Although each protocol will require fine‐tuning depending on the cell type, antibody, and antigen, there are steps common to nearly all applications. This article provides protocols for staining the cytoskeleton and organelles in two very different kinds of cells: flat, adherent fibroblasts and thick, free‐swimmingTetrahymenacells. Additional protocols enable visualization with widefield, laser scanning confocal, and eSRRF super‐resolution fluorescence microscopy. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Immunofluorescence staining of adherent cells such as fibroblasts Basic Protocol 2: Immunofluorescence of suspension cells such asTetrahymena Basic Protocol 3: Visualizing samples with a widefield fluorescence microscope Alternate Protocol 1: Staining suspension cells adhered to poly‐l‐lysine‐coated coverslips Alternate Protocol 2: Visualizing samples with a laser scanning confocal microscope Alternate Protocol 3: Generating super‐resolution images with SRRF microscopy 
    more » « less
  5. Abstract Multifocal microscopy enables high-speed three-dimensional (3D) volume imaging by using a multifocal grating in the emission path. This grating is typically designed to afford a uniform illumination of multifocal subimages for a single emission wavelength. Using the same grating for multicolor imaging results in non-uniform subimage intensities in emission wavelengths for which the grating is not designed. This has restricted multifocal microscopy applications for samples having multicolored fluorophores. In this paper, we present a multicolor multifocal microscope implementation which uses a Spatial Light Modulator (SLM) as a single multifocal grating to realize near-uniform multifocal subimage intensities across multiple wavelength emission bands. Using real-time control of an in-situ-optimized SLM implemented as a multifocal grating, we demonstrate multicolor multifocal 3D imaging over three emission bands by imaging multicolored particles as well as Escherichia coli ( E. coli ) interacting with human liver cancer cells, at $$\sim 2.5$$ ∼ 2.5 multicolor 3D volumes per second acquisition speed. Our multicolor multifocal method is adaptable across SLM hardware, emission wavelength band locations and number of emission bands, making it particularly suited for researchers investigating fast processes occurring across a volume where multiple species are involved. 
    more » « less