skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Collegiate athlete brain data for white matter mapping and network neuroscience
Abstract We describe a dataset of processed data with associated reproducible preprocessing pipeline collected from two collegiate athlete groups and one non-athlete group. The dataset shares minimally processed diffusion-weighted magnetic resonance imaging (dMRI) data, three models of the diffusion signal in the voxel, full-brain tractograms, segmentation of the major white matter tracts as well as structural connectivity matrices. There is currently a paucity of similar datasets openly shared. Furthermore, major challenges are associated with collecting this type of data. The data and derivatives shared here can be used as a reference to study the effects of long-term exposure to collegiate athletics, such as the effects of repetitive head impacts. We use advanced anatomical and dMRI data processing methods publicly available as reproducible web services at brainlife.io.  more » « less
Award ID(s):
1916518 1912270 1636893 1734853
PAR ID:
10213469
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Data
Volume:
8
Issue:
1
ISSN:
2052-4463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. PurposeEstimating microstructural parameters of skeletal muscle from diffusion MRI (dMRI) signal requires understanding the relative importance of both microstructural and dMRI sequence parameters on the signal. This study seeks to determine the sensitivity of dMRI signal to variations in microstructural and dMRI sequence parameters, as well as assess the effect of noise on sensitivity. MethodsUsing a cylindrical myocyte model of skeletal muscle, numerical solutions of the Bloch‐Torrey equation were used to calculate global sensitivity indices of dMRI metrics (FA, RD, MD,,,) for wide ranges of microstructural and dMRI sequence parameters. The microstructural parameters were: myocyte diameter, volume fraction, membrane permeability, intra‐ and extracellular diffusion coefficients, and intra‐ and extracellulartimes. Two separate pulse sequences were examined, a PGSE and a generalized diffusion‐weighted sequence that accommodates a larger range of diffusion times. The effect of noise and signal averaging on the sensitivity of the dMRI metrics was examined by adding synthetic noise to the simulated signal. ResultsAmong the examined parameters, the intracellular diffusion coefficient has the strongest effect, and myocyte diameter is more influential than permeability for FA and RD. The sensitivity indices do not vary significantly between the two pulse sequences. Also, noise strongly affects the sensitivity of the dMRI signal to microstructural variations. ConclusionsWith the identification of key microstructural features that affect dMRI measurements, the reported sensitivity results can help interpret dMRI measurements of skeletal muscle in terms of the underlying microstructure and further develop parsimonious dMRI models of skeletal muscle. 
    more » « less
  2. The Human Connectome Project (HCP) has become a keystone dataset in human neuroscience, with a plethora of important applications in advancing brain imaging methods and an understanding of the human brain. We focused on tractometry of HCP diffusion-weighted MRI (dMRI) data. We used an open-source software library (pyAFQ;https://yeatmanlab.github.io/pyAFQ) to perform probabilistic tractography and delineate the major white matter pathways in the HCP subjects that have a complete dMRI acquisition (n = 1,041). We used diffusion kurtosis imaging (DKI) to model white matter microstructure in each voxel of the white matter, and extracted tract profiles of DKI-derived tissue properties along the length of the tracts. We explored the empirical properties of the data: first, we assessed the heritability of DKI tissue properties using the known genetic linkage of the large number of twin pairs sampled in HCP. Second, we tested the ability of tractometry to serve as the basis for predictive models of individual characteristics (e.g., age, crystallized/fluid intelligence, reading ability, etc.), compared to local connectome features. To facilitate the exploration of the dataset we created a new web-based visualization tool and use this tool to visualize the data in the HCP tractometry dataset. Finally, we used the HCP dataset as a test-bed for a new technological innovation: the TRX file-format for representation of dMRI-based streamlines. We released the processing outputs and tract profiles as a publicly available data resource through the AWS Open Data program's Open Neurodata repository. We found heritability as high as 0.9 for DKI-based metrics in some brain pathways. We also found that tractometry extracts as much useful information about individual differences as the local connectome method. We released a new web-based visualization tool for tractometry --- “Tractoscope” (https://nrdg.github.io/tractoscope). We found that the TRX files require considerably less disk space - a crucial attribute for large datasets like HCP. In addition, TRX incorporates a specification for grouping streamlines, further simplifying tractometry analysis. 
    more » « less
  3. We use a multidimensional signal representation that inte- grates diffusion Magnetic Resonance Imaging (dMRI) and tractography (brain connections) using sparse tensor decomposition. The representa- tion encodes brain connections (fibers) into a very-large, but sparse, core tensor and allows to predict dMRI measurements based on a dictionary of diffusion signals. We propose an algorithm to learn the constituent parts of the model from a dataset. The algorithm assumes a tractography model (support of core tensor) and iteratively minimizes the Frobenius norm of the error as a function of the dictionary atoms, the values of nonzero entries in the sparse core tensor and the fiber weights. We use a nonparametric dictionary learning (DL) approach to estimate signal atoms. Moreover, the algorithm is able to learn multiple dictionaries associated to different brain locations (voxels) allowing for mapping distinctive tissue types. We illustrate the algorithm through results obtained on a large in-vivo high-resolution dataset. 
    more » « less
  4. Abstract Diffusion MRI (dMRI) has become a crucial imaging technique in the field of neuroscience, with a growing number of clinical applications. Although most studies still focus on the brain, there is a growing interest in utilizing dMRI to investigate the healthy or injured spinal cord. The past decade has also seen the development of biophysical models that link MR-based diffusion measures to underlying microscopic tissue characteristics, which necessitates validation through ex vivo dMRI measurements. Building upon 13 years of research and development, we present an open-source, MATLAB-based academic software toolkit dubbed ACID: A Comprehensive Toolbox for Image Processing and Modeling of Brain, Spinal Cord, and Ex Vivo Diffusion MRI Data. ACID is an extension to the Statistical Parametric Mapping (SPM) software, designed to process and model dMRI data of the brain, spinal cord, and ex vivo specimens by incorporating state-of-the-art artifact correction tools, diffusion and kurtosis tensor imaging, and biophysical models that enable the estimation of microstructural properties in white matter. Additionally, the software includes an array of linear and nonlinear fitting algorithms for accurate diffusion parameter estimation. By adhering to the Brain Imaging Data Structure (BIDS) data organization principles, ACID facilitates standardized analysis, ensures compatibility with other BIDS-compliant software, and aligns with the growing availability of large databases utilizing the BIDS format. Furthermore, being integrated into the popular SPM framework, ACID benefits from a wide range of segmentation, spatial processing, and statistical analysis tools as well as a large and growing number of SPM extensions. As such, this comprehensive toolbox covers the entire processing chain from raw DICOM data to group-level statistics, all within a single software package. 
    more » « less
  5. A rapidly emerging research community at the intersection of sport and human-computer interaction (SportsHCI) explores how technology can support physically active humans, such as athletes. At highly competitive levels, coaching staff play a central role in the athlete experience by using data to enhance performance, reduce injuries, and foster team success. However, little is known about the practices and needs of these coaching staff. We conducted five focus groups with 17 collegiate coaching staff across three women’s teams and two men’s teams at an elite U.S. university. Our findings show that coaching staff selectively use data with the goal of balancing performance goals, athlete emotional well-being, and privacy. This paper contributes design recommendations to support coaching staff in operating across the data life cycle through gathering, sharing, deciding, acting, and assessing data as they aim to support team success and foster the well-being of student-athletes. 
    more » « less