skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Diverting β-Hydride Elimination of a π-Allyl Pd II Carbene Complex for the Assembly of Disubstituted Indolines via a Highly Diastereoselective (4 + 1)-Cycloaddition
Award ID(s):
1665440 1956170
PAR ID:
10213472
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Organic Letters
Volume:
22
Issue:
16
ISSN:
1523-7060
Page Range / eLocation ID:
6605 to 6609
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. New computational and experimental studies have been carried out for the MgCCH radical in its X2Σ+ state. Coupled cluster theory with single, double, and perturbative triples, CCSD(T), was used in conjunction with post-CCSD(T) and scalar relativistic additive corrections to compute vibrational quartic force fields for this molecule. From the quartic force fields, higher-order spectroscopic properties, including rotational constants, were obtained. In tandem, the five lowest energy rotational transitions for MgCCH, N = 1→0 through N = 5→4, were measured for the first time using Fourier transform microwave/millimeter wave methods in the frequency range 9 -50 GHz. The radical was created in the Discharge Assisted Laser Ablation Source (DALAS) developed in the Ziurys group. A combined fit of these data with previous millimeter direct absorption measurements have yielded the most accurate rotational constants for MgCCH to date. The computed principle rotational constant lies within 1.51-1.65 MHz of the experimental one, validating the computational approach. High-level theory was then applied to produce accurate rovibrational spectroscopic constants for MgCCH+, including a rotational constant of B0 = 5354.5–5359.5 MHz.. These new predictions will further the experimental study of MgCCH+, and aid in the low-temperature characterization of MgCCH, detected towards the circumstellar shell of IRC+10216, a carbon-rich star. 
    more » « less
  2. HOHg(II)O•, formed from HOHg(I)• + O3, is a key intermediate in OH-initiated oxidation of Hg(0) in the atmosphere. As no experimental data is available for HOHg(II)O•, we use computational chemistry (CCSD(T)//M06-2X/AVTZ) to characterize its reactions with atmospheric trace gases (NO, NO2, CH4, C2H4, CH2O and CO). In summary, HOHg(II)O•, like the analogous BrHg(II)O• radical, largely mimics the reactivity of •OH in reactions with NOx, alkanes, alkenes, and aldehydes. The rate constant for its reaction with methane (HOHg(II)O• + CH4 → Hg(II)(OH)2 + •CH3) is about four times higher than that of •OH at 298 K. All these reactions maintain mercury as Hg(II), except for HOHg(II)O• + CO → HOHg(I)• + CO2. Considering only the six reactions studied here, we find that reduction by CO dominates the fate of HOHg(II)O• (79-93%) in many air masses (in the stratosphere and at ground level in rural, marine, and polluted urban regions) with only modest competition from HOHg(II)O• + CH4 (<15%). We expect that this work will help global modeling of atmospheric mercury chemistry. 
    more » « less