Abstract Soil is home to a multitude of microorganisms from all three domains of life. These organisms and their interactions are crucial in driving the cycling of soil carbon. One key indicator of this process is Microbial Carbon Use Efficiency (CUE), which shows how microbes influence soil carbon storage through their biomass production. Although CUE varies among different microorganisms, there have been few studies that directly examine how biotic factors influence CUE. One such factor could be body size, which can impact microbial growth rates and interactions in soil, thereby influencing CUE. Despite this, evidence demonstrating a direct causal connection between microbial biodiversity and CUE is still scarce. To address these knowledge gaps, we conducted an experiment where we manipulated microbial body size and biodiversity through size‐selective filtering. Our findings show that manipulating the structure of the microbial community can reduce CUE by approximately 65%. When we restricted the maximum body size of the microbial community, we observed a reduction in bacterial diversity and functional potential, which in turn lowered the community's CUE. Interestingly, when we included large body size micro‐eukarya in the soil, it shifted the soil carbon cycling, increasing CUE by approximately 50% and the soil carbon to nitrogen ratio by about 25%. Our metrics of microbial diversity and community structure were able to explain 36%–50% of the variation in CUE. This highlights the importance of microbial traits, community structure and trophic interactions in mediating soil carbon cycling.
more »
« less
Heavy and wet: The consequences of violating assumptions of measuring soil microbial growth efficiency using the 18O water method
Soils store more carbon than the biosphere and atmosphere combined, and the efficiency to which soil microorganisms allocate carbon to growth rather than respiration is increasingly considered a proxy for the soil capacity to store carbon. This carbon use efficiency (CUE) is measured via different methods, and more recently, the 18O-H2O method has been embraced as a significant improvement for measuring CUE of soil microbial communities. Based on extrapolating 18O incorporation into DNA to new biomass, this measurement makes various implicit assumptions about the microbial community at hand. Here we conducted a literature review to evaluate how viable these assumptions are and then developed a mathematical model to test how violating them affects estimates of the growth component of CUE in soil. We applied this model to previously collected data from two kinds of soil microbial communities. By changing one parameter at a time, we confirmed our previous observation that CUE was reduced by fungal removal. Our results also show that depending on the microbial community composition, there can be substantial discrepancies between estimated and true microbial growth. Of the numerous implicit assumptions that might be violated, not accounting for the contribution of sources of oxygen other than extracellular water to DNA leads to a consistent underestimation of CUE. We present a framework that allows researchers to evaluate how their experimental conditions may influence their 18O-H2O-based CUE measurements and suggest the parameters that need further constraining to more accurately quantify growth and CUE.
more »
« less
- Award ID(s):
- 1832210
- PAR ID:
- 10213489
- Date Published:
- Journal Name:
- Elementa: Science of the Anthropocene
- Volume:
- 8
- Issue:
- 1
- ISSN:
- 2325-1026
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Soils store more carbon than other terrestrial ecosystems 1,2 . How soil organic carbon (SOC) forms and persists remains uncertain 1,3 , which makes it challenging to understand how it will respond to climatic change 3,4 . It has been suggested that soil microorganisms play an important role in SOC formation, preservation and loss 5–7 . Although microorganisms affect the accumulation and loss of soil organic matter through many pathways 4,6,8–11 , microbial carbon use efficiency (CUE) is an integrative metric that can capture the balance of these processes 12,13 . Although CUE has the potential to act as a predictor of variation in SOC storage, the role of CUE in SOC persistence remains unresolved 7,14,15 . Here we examine the relationship between CUE and the preservation of SOC, and interactions with climate, vegetation and edaphic properties, using a combination of global-scale datasets, a microbial-process explicit model, data assimilation, deep learning and meta-analysis. We find that CUE is at least four times as important as other evaluated factors, such as carbon input, decomposition or vertical transport, in determining SOC storage and its spatial variation across the globe. In addition, CUE shows a positive correlation with SOC content. Our findings point to microbial CUE as a major determinant of global SOC storage. Understanding the microbial processes underlying CUE and their environmental dependence may help the prediction of SOC feedback to a changing climate.more » « less
-
Giovannoni, Stephen J. (Ed.)ABSTRACT The strategy that microbial decomposers take with respect to using substrate for growth versus maintenance is one essential biological determinant of the propensity of carbon to remain in soil. To quantify the environmental sensitivity of this key physiological trade-off, we characterized the carbon use efficiency (CUE) of 23 soil bacterial isolates across seven phyla at three temperatures and with up to four substrates. Temperature altered CUE in both an isolate-specific manner and a substrate-specific manner. We searched for genes correlated with the temperature sensitivity of CUE on glucose and deemed those functional genes which were similarly correlated with CUE on other substrates to be validated as markers of CUE. Ultimately, we did not identify any such robust functional gene markers of CUE or its temperature sensitivity. However, we found a positive correlation between rRNA operon copy number and CUE, opposite what was expected. We also found that inefficient taxa increased their CUE with temperature, while those with high CUE showed a decrease in CUE with temperature. Together, our results indicate that CUE is a flexible parameter within bacterial taxa and that the temperature sensitivity of CUE is better explained by observed physiology than by genomic composition across diverse taxa. We conclude that the bacterial CUE response to temperature and substrate is more variable than previously thought. IMPORTANCE Soil microbes respond to environmental change by altering how they allocate carbon to growth versus respiration—or carbon use efficiency (CUE). Ecosystem and Earth System models, used to project how global soil C stocks will continue to respond to the climate crisis, often assume that microbes respond homogeneously to changes in the environment. In this study, we quantified how CUE varies with changes in temperature and substrate quality in soil bacteria and evaluated why CUE characteristics may differ between bacterial isolates and in response to altered growth conditions. We found that bacterial taxa capable of rapid growth were more efficient than those limited to slow growth and that taxa with high CUE were more likely to become less efficient at higher temperatures than those that were less efficient to begin with. Together, our results support the idea that the CUE temperature response is constrained by both growth rate and CUE and that this partly explains how bacteria acclimate to a warming world.more » « less
-
Abstract Study of life history strategies may help predict the performance of microorganisms in nature by organizing the complexity of microbial communities into groups of organisms with similar strategies. Here, we tested the extent that one common application of life history theory, the copiotroph-oligotroph framework, could predict the relative population growth rate of bacterial taxa in soils from four different ecosystems. We measured the change of in situ relative growth rate to added glucose and ammonium using both 18O–H2O and 13C quantitative stable isotope probing to test whether bacterial taxa sorted into copiotrophic and oligotrophic groups. We saw considerable overlap in nutrient responses across most bacteria regardless of phyla, with many taxa growing slowly and few taxa that grew quickly. To define plausible life history boundaries based on in situ relative growth rates, we applied Gaussian mixture models to organisms’ joint 18O–13C signatures and found that across experimental replicates, few taxa could consistently be assigned as copiotrophs, despite their potential for fast growth. When life history classifications were assigned based on average relative growth rate at varying taxonomic levels, finer resolutions (e.g., genus level) were significantly more effective in capturing changes in nutrient response than broad taxonomic resolution (e.g., phylum level). Our results demonstrate the difficulty in generalizing bacterial life history strategies to broad lineages, and even to single organisms across a range of soils and experimental conditions. We conclude that there is a continued need for the direct measurement of microbial communities in soil to advance ecologically realistic frameworks.more » « less
-
Abstract Conceptual and empirical advances in soil biogeochemistry have challenged long-held assumptions about the role of soil micro-organisms in soil organic carbon (SOC) dynamics; yet, rigorous tests of emerging concepts remain sparse. Recent hypotheses suggest that microbial necromass production links plant inputs to SOC accumulation, with high-quality (i.e., rapidly decomposing) plant litter promoting microbial carbon use efficiency, growth, and turnover leading to more mineral stabilization of necromass. We test this hypothesis experimentally and with observations across six eastern US forests, using stable isotopes to measure microbial traits and SOC dynamics. Here we show, in both studies, that microbial growth, efficiency, and turnover are negatively (not positively) related to mineral-associated SOC. In the experiment, stimulation of microbial growth by high-quality litter enhances SOC decomposition, offsetting the positive effect of litter quality on SOC stabilization. We suggest that microbial necromass production is not the primary driver of SOC persistence in temperate forests. Factors such as microbial necromass origin, alternative SOC formation pathways, priming effects, and soil abiotic properties can strongly decouple microbial growth, efficiency, and turnover from mineral-associated SOC.more » « less
An official website of the United States government

