skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Emerging investigator series: entrapment of uranium–phosphorus nanocrystals inside root cells of Tamarix plants from a mine waste site
We investigated the mechanisms of uranium (U) uptake by Tamarix (salt cedars) growing along the Rio Paguate, which flows throughout the Jackpile mine near Pueblo de Laguna, New Mexico. Tamarix were selected for this study due to the detection of U in the roots and shoots of field collected plants (0.6–58.9 mg kg −1 ), presenting an average bioconcentration factor greater than 1. Synchrotron-based micro X-ray fluorescence analyses of plant roots collected from the field indicate that the accumulation of U occurs in the cortex of the root. The mechanisms for U accumulation in the roots of Tamarix were further investigated in controlled-laboratory experiments where living roots of field plants were macerated for 24 h or 2 weeks in a solution containing 100 μM U. The U concentration in the solution decreased 36–59% after 24 h, and 49–65% in two weeks. Microscopic and spectroscopic analyses detected U precipitation in the root cell walls near the xylems of the roots, confirming the initial results from the field samples. High-resolution TEM was used to study the U fate inside the root cells, and needle-like U–P nanocrystals, with diameter <7 nm, were found entrapped inside vacuoles in cells. EXAFS shell-by-shell fitting suggest that U is associated with carbon functional groups. The preferable binding of U to the root cell walls may explain the U retention in the roots of Tamarix , followed by U–P crystal precipitation, and pinocytotic active transport and cellular entrapment. This process resulted in a limited translocation of U to the shoots in Tamarix plants. This study contributes to better understanding of the physicochemical mechanisms affecting the U uptake and accumulation by plants growing near contaminated sites.  more » « less
Award ID(s):
1652619 1914490
PAR ID:
10213522
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Environmental Science: Processes & Impacts
Volume:
23
Issue:
1
ISSN:
2050-7887
Page Range / eLocation ID:
73 to 85
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY Root systems are uniquely adapted to fluctuations in external nutrient availability. In response to suboptimal nitrogen conditions, plants adopt a root foraging strategy that favors a deeper and more branched root architecture, enabling them to explore and acquire soil resources. This response is gradually suppressed as nitrogen conditions improve. However, the root hairless mutantbuzzinBrachypodium distachyonshows a constitutive nitrogen‐foraging phenotype with increased root growth and root branching under nitrate‐rich conditions. To investigate how this unique root structure and root hair morphology in thebuzzmutant affects nitrate metabolism, we measured the expression of nitrate‐responsive genes, nitrate uptake and accumulation, nitrate reductase activity, and nitrogen use efficiency. We found that nitrate responses were upregulated by low nitrate conditions inbuzzrelative to wild type and correlated with increased expression of nitrate transport genes. In addition,buzzmutants showed increased nitrate uptake and a higher accumulation of nitrate in shoots. Thebuzzmutant also showed increased nitrate reductase activity in the shoots under low nitrate conditions. However, developmentally mature wild‐type andbuzzplants grown under low nitrate had similar nitrogen use efficiencies. These findings suggest thatBUZZinfluences nitrate signaling and that enhanced responsiveness to nitrate is required inbuzzseedlings to compensate for the lack of root hairs. These data question the importance of root hairs in enhancing nitrate uptake and expand our understanding of how root hairs in grasses affect physiological responses to low nitrate availability. 
    more » « less
  2. Abstract Glutaredoxins (GRXs) are small oxidoreductase enzymes that can reduce disulfide bonds in target proteins. The class III GRX gene family is unique to land plants, andArabidopsis thalianahas 21 class III GRXs, which remain largely uncharacterized. About 80% ofA. thalianaclass III GRXs are transcriptionally regulated by nitrate, and several recent studies have suggested roles for these GRXs in nitrogen signaling. Our objective was to functionally characterize two nitrate‐induced GRX genes,AtGRXS5andAtGRXS8, defining their roles in signaling and development in theA. thalianaroot. We demonstrated thatAtGRXS5andAtGRXS8are primarily expressed in root and shoot vasculature (phloem), and that the corresponding GRX proteins display nucleo‐cytosolic subcellular localization. Ectopic expression ofAtGRXS8in transgenic plants caused major alterations in root system architecture: Normal primary root development, but a near absence of lateral roots. RNA sequencing demonstrated that the roots ofAtGRXS8‐overexpressing plants show strongly reduced transcript abundance for many primary nitrate response genes, including the major high‐affinity nitrate transporters. Correspondingly, high‐affinity nitrate uptake and the transport of nitrate from roots to shoots are compromised inAtGRXS8‐overexpressing plants. Finally, we demonstrated that the AtGRXS8 protein can physically interact with the TGA1 and TGA4 transcription factors, which are central regulators of early transcriptional responses to nitrate inA. thalianaroots. Overall, these results suggest thatAtGRXS8acts to quench both transcriptional and developmental aspects of primary nitrate response, potentially by interfering with the activity of the TGA1 and TGA4 transcription factors. 
    more » « less
  3. Phytoextraction presents a promising alternative for desalinating saline environments. Our study investigated the phytoremediation efficiency and ion uptake mechanisms of Chenopodium quinoa (Quinoa) and Triticum aestivum (wheat) in response to salt stress. The plants were subjected to NaCl-induced salinity levels of 5, 10, and 15 dS m⁻1 in a hydroponic system, and we measured the remediation efficiency for sodium, potassium, calcium, magnesium, and chloride ions. The solutions incubated with wheat plants exhibited higher ion concentrations than those with quinoa. Chenopodium showed significantly higher bioaccumulation of ions (Mg2⁺, Ca2⁺, Na⁺, Cl⁻, K⁺) in its roots and leaves compared to Triticum. Chenopodium demonstrated greater ion uptake efficiency than Triticum. Under control conditions, both plants effectively contributed to desalination, as indicated by their translocation factor values. In contrast, Chenopodium showed higher TF under salt stress than Triticum for the measured ions. Salinity did not significantly affect potassium accumulation in quinoa shoots, which helped maintain membrane integrity compared to wheat. The analysis of the oxidative status revealed that wheat accumulated higher levels of hydrogen peroxide and lipid peroxidation, especially in the roots. The activities of antioxidative enzymes superoxide dismutase, peroxidase, catalase, ascorbic peroxidase, and glutathione reductase showed a significant increase in the roots and leaves of Chenopodium under salt stress, providing essential protection against reactive oxygen species and lipid peroxidation. Additionally, the increase in leaf area and dry weight in quinoa indicates a more significant accumulation of ions at higher concentrations, demonstrating its superior phytoremediation efficiency compared to wheat 
    more » « less
  4. ZnO naoparticles (NPs) with a Zn-phosphate shell can modulate the routes of Zn root uptake, translocation and storage mechanisms compared to ZnO NPs. Applying ZnO NPs to roots provides much greater uptake into plants than for foliar application. 
    more » « less
  5. Abstract Iron (Fe) uptake and translocation in plants are fine-tuned by complex mechanisms that are not yet fully understood. In Arabidopsis thaliana, local regulation of Fe homeostasis at the root level has been extensively studied and is better understood than the systemic shoot-to-root regulation. While the root system is solely a sink tissue that depends on photosynthates translocated from source tissues, the shoot system is a more complex tissue, where sink and source tissues occur synchronously. In this study, and to gain better insight into the Fe deficiency responses in leaves, we overexpressed Zinc/Iron-regulated transporter-like Protein (ZIP5), an Fe/Zn transporter, in phloem-loading cells (proSUC2::AtZIP5) and determined the timing of Fe deficiency responses in sink (young leaves and roots) and source tissues (leaves). Transgenic lines overexpressing ZIP5 in companion cells displayed increased sensitivity to Fe deficiency in root growth assays. Moreover, young leaves and roots (sink tissues) displayed either delayed or dampened transcriptional responses to Fe deficiency compared to wild-type (WT) plants. We also took advantage of the Arabidopsis mutant nas4x-1 to explore Fe transcriptional responses in the opposite scenario, where Fe is retained in the vasculature but in an unavailable and precipitated form. In contrast to proSUC2::AtZIP5 plants, nas4x-1 young leaves and roots displayed a robust and constitutive Fe deficiency response, while mature leaves showed a delayed and dampened Fe deficiency response compared to WT plants. Altogether, our data provide evidence suggesting that Fe sensing within leaves can also occur locally in a leaf-specific manner. 
    more » « less