Real-time forecasting of non-stationary time series is a challenging problem, especially when the time series evolves rapidly. For such cases, it has been observed that ensemble models consisting of a diverse set of model classes can perform consistently better than individual models. In order to account for the nonstationarity of the data and the lack of availability of training examples, the models are retrained in real-time using the most recent observed data samples. Motivated by the robust performance properties of ensemble models, we developed a Bayesian model averaging ensemble technique consisting of statistical, deep learning, and compartmental models for fore-casting epidemiological signals, specifically, COVID-19 signals. We observed the epidemic dynamics go through several phases (waves). In our ensemble model, we observed that different model classes performed differently during the various phases. Armed with this understanding, in this paper, we propose a modification to the ensembling method to employ this phase information and use different weighting schemes for each phase to produce improved forecasts. However, predicting the phases of such time series is a significant challenge, especially when behavioral and immunological adaptations govern the evolution of the time series. We explore multiple datasets that can serve as leading indicators of trendmore »
Examining Deep Learning Models with Multiple Data Sources for COVID-19 Forecasting
The COVID-19 pandemic represents the most significant public health disaster since the 1918 influenza pandemic. During pandemics such as COVID-19, timely and reliable spatiotemporal forecasting of epidemic dynamics is crucial. Deep learning-based time series models for forecasting have recently gained popularity and have been successfully used for epidemic forecasting. Here we focus on the design and analysis of deep learning-based models for COVID-19 forecasting. We implement multiple recurrent neural network-based deep learning models and combine them using the stacking ensemble technique. In order to incorporate the effects of multiple factors in COVID-19 spread, we consider multiple sources such as COVID-19 confirmed and death case count data and testing data for better predictions. To overcome the sparsity of training data and to address the dynamic correlation of the disease, we propose clustering-based training for high-resolution forecasting.
The methods help us to identify the similar trends of certain groups of regions due to various spatio-temporal effects. We examine the proposed method for forecasting weekly COVID-19 new confirmed cases at county-, state-, and country-level. A comprehensive comparison between different time series models in COVID-19 context is conducted and analyzed. The results show that simple deep learning models can achieve comparable or better performance when more »
- Publication Date:
- NSF-PAR ID:
- 10213736
- Journal Name:
- ArXivorg
- ISSN:
- 2331-8422
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This project is funded by the US National Science Foundation (NSF) through their NSF RAPID program under the title “Modeling Corona Spread Using Big Data Analytics.” The project is a joint effort between the Department of Computer & Electrical Engineering and Computer Science at FAU and a research group from LexisNexis Risk Solutions. The novel coronavirus Covid-19 originated in China in early December 2019 and has rapidly spread to many countries around the globe, with the number of confirmed cases increasing every day. Covid-19 is officially a pandemic. It is a novel infection with serious clinical manifestations, including death, and it has reached at least 124 countries and territories. Although the ultimate course and impact of Covid-19 are uncertain, it is not merely possible but likely that the disease will produce enough severe illness to overwhelm the worldwide health care infrastructure. Emerging viral pandemics can place extraordinary and sustained demands on public health and health systems and on providers of essential community services. Modeling the Covid-19 pandemic spread is challenging. But there are data that can be used to project resource demands. Estimates of the reproductive number (R) of SARS-CoV-2 show that at the beginning of the epidemic, each infectedmore »
-
Abstract The objective of this study is to examine the transmission risk of COVID-19 based on cross-county population co-location data from Facebook. The rapid spread of COVID-19 in the United States has imposed a major threat to public health, the real economy, and human well-being. With the absence of effective vaccines, the preventive actions of social distancing, travel reduction and stay-at-home orders are recognized as essential non-pharmacologic approaches to control the infection and spatial spread of COVID-19. Prior studies demonstrated that human movement and mobility drove the spatiotemporal distribution of COVID-19 in China. Little is known, however, about the patterns and effects of co-location reduction on cross-county transmission risk of COVID-19. This study utilizes Facebook co-location data for all counties in the United States from March to early May 2020 for conducting spatial network analysis where nodes represent counties and edge weights are associated with the co-location probability of populations of the counties. The analysis examines the synchronicity and time lag between travel reduction and pandemic growth trajectory to evaluate the efficacy of social distancing in ceasing the population co-location probabilities, and subsequently the growth in weekly new cases across counties. The results show that the mitigation effects of co-locationmore »
-
Time-evolution of partial differential equations is the key to model several dynamical processes, events forecasting but the operators associated with such problems are non-linear. We propose a Padé approximation based exponential neural operator scheme for efficiently learning the map between a given initial condition and activities at a later time. The multiwavelets bases are used for space discretization. By explicitly embedding the exponential operators in the model, we reduce the training parameters and make it more data-efficient which is essential in dealing with scarce real-world datasets. The Padé exponential operator uses a to model the non-linearity compared to recent neural operators that rely on using multiple linear operator layers in succession. We show theoretically that the gradients associated with the recurrent Padé network are bounded across the recurrent horizon. We perform experiments on non-linear systems such as Korteweg-de Vries (KdV) and Kuramoto–Sivashinsky (KS) equations to show that the proposed approach achieves the best performance and at the same time is data-efficient. We also show that urgent real-world problems like Epidemic forecasting (for example, COVID-19) can be formulated as a 2D time-varying operator problem. The proposed Padé exponential operators yield better prediction results ( better MAE than best neural operator (non-neuralmore »
-
Time-evolution of partial differential equations is the key to model several dynamical processes, events forecasting but the operators associated with such problems are non-linear. We propose a Padé approximation based exponential neural operator scheme for efficiently learning the map between a given initial condition and activities at a later time. The multiwavelets bases are used for space discretization. By explicitly embedding the exponential operators in the model, we reduce the training parameters and make it more data-efficient which is essential in dealing with scarce real-world datasets. The Padé exponential operator uses a to model the non-linearity compared to recent neural operators that rely on using multiple linear operator layers in succession. We show theoretically that the gradients associated with the recurrent Padé network are bounded across the recurrent horizon. We perform experiments on non-linear systems such as Korteweg-de Vries (KdV) and Kuramoto–Sivashinsky (KS) equations to show that the proposed approach achieves the best performance and at the same time is data-efficient. We also show that urgent real-world problems like Epidemic forecasting (for example, COVID-19) can be formulated as a 2D time-varying operator problem. The proposed Padé exponential operators yield better prediction results ( better MAE than best neural operator (non-neuralmore »