skip to main content


Search for: All records

Award ID contains: 1918656

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The ongoing Russian aggression against Ukraine has forced over eight million people to migrate out of Ukraine. Understanding the dynamics of forced migration is essential for policy-making and for delivering humanitarian assistance. Existing work is hindered by a reliance on observational data which is only available well after the fact. In this work, we study the efficacy of a data-driven agent-based framework motivated by social and behavioral theory in predicting outflow of migrants as a result of conflict events during the initial phase of the Ukraine war. We discuss policy use cases for the proposed framework by demonstrating how it can leverage refugee demographic details to answer pressing policy questions. We also show how to incorporate conflict forecast scenarios to predict future conflict-induced migration flows. Detailed future migration estimates across various conflict scenarios can both help to reduce policymaker uncertainty and improve allocation and staging of limited humanitarian resources in crisis settings.

     
    more » « less
  2. Free, publicly-accessible full text available July 21, 2025
  3. Discrete dynamical systems serve as useful formal models to study diffusion phenomena in social networks. Several recent articles have studied the algorithmic and complexity aspects of some decision problems on synchronous Boolean networks, which are discrete dynamical systems whose underlying graphs are directed, and may contain directed cycles. Such problems can be regarded as reachability problems in the phase space of the corresponding dynamical system. Previous work has shown that some of these decision problems become efficiently solvable for systems on directed acyclic graphs (DAGs). Motivated by this line of work, we investigate a number of decision problems for dynamical systems whose underlying graphs are DAGs. We show that computational intractability (i.e.,PSPACE-completeness) results for reachability problems hold even for dynamical systems on DAGs. We also identify some restricted versions of dynamical systems on DAGs for which reachability problem can be solved efficiently. In addition, we show that a decision problem (namely, Convergence), which is efficiently solvable for dynamical systems on DAGs, becomesPSPACE-complete for Quasi-DAGs (i.e., graphs that become DAGs by the removal of asingleedge). In the process of establishing the above results, we also develop several structural properties of the phase spaces of dynamical systems on DAGs.

     
    more » « less
    Free, publicly-accessible full text available June 30, 2025
  4. Free, publicly-accessible full text available May 10, 2025
  5. Free, publicly-accessible full text available May 6, 2025
  6. Discrete dynamical systems are commonly used to model the spread of contagions on real-world networks. Under the PAC framework, existing research has studied the problem of learning the behavior of a system, assuming that the underlying network is known. In this work, we focus on a more challenging setting: to learn both the behavior and the underlying topology of a black-box system. We show that, in general, this learning problem is computationally intractable. On the positive side, we present efficient learning methods under the PAC model when the underlying graph of the dynamical system belongs to certain classes. Further, we examine a relaxed setting where the topology of an unknown system is partially observed. For this case, we develop an efficient PAC learner to infer the system and establish the sample complexity. Lastly, we present a formal analysis of the expressive power of the hypothesis class of dynamical systems where both the topology and behavior are unknown, using the well-known Natarajan dimension formalism. Our results provide a theoretical foundation for learning both the topology and behavior of discrete dynamical systems.

     
    more » « less
    Free, publicly-accessible full text available March 25, 2025
  7. Large-scale population displacements arising from conflict-induced forced migration generate uncertainty and introduce several policy challenges. Addressing these concerns requires an interdisciplinary approach that integrates knowledge from both computational modeling and social sciences. We propose a generalized computational agent-based modeling framework grounded by Theory of Planned Behavior to model conflict-induced migration outflows within Ukraine during the start of that conflict in 2022. Existing migration modeling frameworks that attempt to address policy implications primarily focus on destination while leaving absent a generalized computational framework grounded by social theory focused on the conflict-induced region. We propose an agent-based framework utilizing a spatiotemporal gravity model and a Bi-threshold model over a Graph Dynamical System to update migration status of agents in conflict-induced regions at fine temporal and spatial granularity. This approach significantly outperforms previous work when examining the case of Russian invasion in Ukraine. Policy implications of the proposed framework are demonstrated by modeling the migration behavior of Ukrainian civilians attempting to flee from regions encircled by Russian forces. We also showcase the generalizability of the model by simulating a past conflict in Burundi, an alternative conflict setting. Results demonstrate the utility of the framework for assessing conflict-induced migration in varied settings as well as identifying vulnerable civilian populations.

     
    more » « less
    Free, publicly-accessible full text available March 25, 2025
  8. Networks allow us to describe a wide range of interaction phenomena that occur in complex systems arising in such diverse fields of knowledge as neuroscience, engineering, ecology, finance, and social sciences. Until very recently, the primary focus of network models and tools has been on describing the pairwise relationships between system entities. However, increasingly more studies indicate that polyadic or higher-order group relationships among multiple network entities may be the key toward better understanding of the intrinsic mechanisms behind the functionality of complex systems. Such group interactions can be, in turn, described in a holistic manner by simplicial complexes of graphs. Inspired by these recently emerging results on the utility of the simplicial geometry of complex networks for contagion propagation and armed with a large-scale synthetic social contact network (also known as a digital twin) of the population in the U.S. state of Virginia, in this paper, we aim to glean insights into the role of higher-order social interactions and the associated varying social group determinants on COVID-19 propagation and mitigation measures.

     
    more » « less
  9. Abstract Understanding the scope, prevalence, and impact of the COVID-19 pandemic response will be a rich ground for research for many years. Key to the response to COVID-19 was the non-pharmaceutical intervention (NPI) measures, such as mask mandates or stay-in-place orders. For future pandemic preparedness, it is critical to understand the impact and scope of these interventions. Given the ongoing nature of the pandemic, existing NPI studies covering only the initial portion provide only a narrow view of the impact of NPI measures. This paper describes a dataset of NPI measures taken by counties in the U.S. state of Virginia that include measures taken over the first two years of the pandemic beginning in March 2020. This data enables analyses of NPI measures over a long time period that can produce impact analyses on both the individual NPI effectiveness in slowing the pandemic spread, and the impact of various NPI measures on the behavior and conditions of the different counties and state. 
    more » « less