skip to main content


Title: Evaluating the impact of international airline suspensions on the early global spread of COVID-19
Global airline networks play a key role in the global importation of emerging infectious diseases. Detailed information on air traffic between international airports has been demonstrated to be useful in retrospectively validating and prospectively predicting case emergence in other countries. In this paper, we use a well-established metric known as effective distance on the global air traffic data from IATA to quantify risk of emergence for different countries as a consequence of direct importation from China, and compare it against arrival times for the first 24 countries. Using this model trained on official first reports from WHO, we estimate time of arrival (ToA) for all other countries. We then incorporate data on airline suspensions to recompute the effective distance and assess the effect of such cancellations in delaying the estimated arrival time for all other countries. Finally we use the infectious disease vulnerability indices to explain some of the estimated reporting delays.  more » « less
Award ID(s):
1633028 1443054 1916805
NSF-PAR ID:
10213761
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
medRxiv
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Since its outbreak in December 2019, the novel coronavirus 2019 (COVID-19) has spread to 191 countries and caused millions of deaths. Many countries have experienced multiple epidemic waves and faced containment pressures from both domestic and international transmission. In this study, we conduct a multiscale geographic analysis of the spread of COVID-19 in a policy-influenced dynamic network to quantify COVID-19 importation risk under different policy scenarios using evidence from China. Our spatial dynamic panel data (SDPD) model explicitly distinguishes the effects of travel flows from the effects of transmissibility within cities, across cities, and across national borders. We find that within-city transmission was the dominant transmission mechanism in China at the beginning of the outbreak and that all domestic transmission mechanisms were muted or significantly weakened before importation posed a threat. We identify effective containment policies by matching the change points of domestic and importation transmissibility parameters to the timing of various interventions. Our simulations suggest that importation risk is limited when domestic transmission is under control, but that cumulative cases would have been almost 13 times higher if domestic transmissibility had resurged to its precontainment level after importation and 32 times higher if domestic transmissibility had remained at its precontainment level since the outbreak. Our findings provide practical insights into infectious disease containment and call for collaborative and coordinated global suppression efforts.

     
    more » « less
  2. Abstract

    Despite a number of successful approaches in predicting the spatiotemporal patterns of the novel coronavirus (COVID-19) pandemic and quantifying the effectiveness of non-pharmaceutical interventions starting from data about the initial outbreak location, we lack an intrinsic understanding as outbreak locations shift and evolve. Here, we fill this gap by developing a country distance approach to capture the pandemic’s propagation backbone tree from a complex airline network with multiple and evolving outbreak locations. We apply this approach, which is analogous to the effective resistance in series and parallel circuits, to examine countries’ closeness regarding disease spreading and evaluate the effectiveness of travel restrictions on delaying infections. In particular, we find that 63.2% of travel restrictions implemented as of 1 June 2020 are ineffective. The remaining percentage postponed the disease arrival time by 18.56 days per geographical area and resulted in a total reduction of 13,186,045 infected cases. Our approach enables us to design optimized and coordinated travel restrictions to extend the delay in arrival time and further reduce more infected cases while preserving air travel.

     
    more » « less
  3. From the start, the airline industry has remarkably connected countries all over the world through rapid long-distance transportation, helping people overcome geographic barriers. Consequently, this has ushered in substantial economic growth, both nationally and internationally. The airline industry produces vast amounts of data, capturing a diverse set of information about their operations, including data related to passengers, freight, flights, and much more. Analyzing air travel data can advance the understanding of airline market dynamics, allowing companies to provide customized, efficient, and safe transportation services. Due to big data challenges in such a complex environment, the benefits of drawing insights from the air travel data in the airline industry have not yet been fully explored. This article aims to survey various components and corresponding proposed data analysis methodologies that have been identified as essential to the inner workings of the airline industry. We introduce existing data sources commonly used in the papers surveyed and summarize their availability. Finally, we discuss several potential research directions to better harness airline data in the future. We anticipate this study to be used as a comprehensive reference for both members of the airline industry and academic scholars with an interest in airline research. 
    more » « less
  4. Our world is undergoing rapid planetary changes driven by human activities, often mediated by economic incentives and resource management, affecting all life on Earth. Concurrently, many infectious diseases have recently emerged or spread into new populations. Mounting evidence suggests that global change—including climate change, land-use change, urbanization, and global movement of individuals, species, and goods—may be accelerating disease emergence by reshaping ecological systems in concert with socioeconomic factors. Here, we review insights, approaches, and mechanisms by which global change drives disease emergence from a disease ecology perspective. We aim to spur more interdisciplinary collaboration with economists and identification of more effective and sustainable interventions to prevent disease emergence. While almost all infectious diseases change in response to global change, the mechanisms and directions of these effects are system specific, requiring new, integrated approaches to disease control that recognize linkages between environmental and economic sustainability and human and planetary health. Expected final online publication date for the Annual Review of Resource Economics, Volume 14 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates. 
    more » « less
  5. Disease surveillance systems provide early warnings of disease outbreaks before they become public health emergencies. However, pandemics containment would be challenging due to the complex immunity landscape created by multiple variants. Genomic surveillance is critical for detecting novel variants with diverse characteristics and importation/emergence times. Yet, a systematic study incorporating genomic monitoring, situation assessment, and intervention strategies is lacking in the literature. We formulate an integrated computational modeling framework to study a realistic course of action based on sequencing, analysis, and response. We study the effects of the second variant’s importation time, its infectiousness advantage and, its cross-infection on the novel variant’s detection time, and the resulting intervention scenarios to contain epidemics driven by two-variants dynamics. Our results illustrate the limitation in the intervention’s effectiveness due to the variants’ competing dynamics and provide the following insights: i) There is a set of importation times that yields the worst detection time for the second variant, which depends on the first variant’s basic reproductive number; ii) When the second variant is imported relatively early with respect to the first variant, the cross-infection level does not impact the detection time of the second variant. We found that depending on the target metric, the best outcomes are attained under different interventions’ regimes. Our results emphasize the importance of sustained enforcement of Non-Pharmaceutical Interventions on preventing epidemic resurgence due to importation/emergence of novel variants. We also discuss how our methods can be used to study when a novel variant emerges within a population.

     
    more » « less