skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Country distancing increase reveals the effectiveness of travel restrictions in stopping COVID-19 transmission
Abstract Despite a number of successful approaches in predicting the spatiotemporal patterns of the novel coronavirus (COVID-19) pandemic and quantifying the effectiveness of non-pharmaceutical interventions starting from data about the initial outbreak location, we lack an intrinsic understanding as outbreak locations shift and evolve. Here, we fill this gap by developing a country distance approach to capture the pandemic’s propagation backbone tree from a complex airline network with multiple and evolving outbreak locations. We apply this approach, which is analogous to the effective resistance in series and parallel circuits, to examine countries’ closeness regarding disease spreading and evaluate the effectiveness of travel restrictions on delaying infections. In particular, we find that 63.2% of travel restrictions implemented as of 1 June 2020 are ineffective. The remaining percentage postponed the disease arrival time by 18.56 days per geographical area and resulted in a total reduction of 13,186,045 infected cases. Our approach enables us to design optimized and coordinated travel restrictions to extend the delay in arrival time and further reduce more infected cases while preserving air travel.  more » « less
Award ID(s):
2047488
PAR ID:
10237159
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Physics
Volume:
4
Issue:
1
ISSN:
2399-3650
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Since the emergence of coronavirus disease 2019 (COVID-19), unprecedented movement restrictions and social distancing measures have been implemented worldwide. The socioeconomic repercussions have fueled calls to lift these measures. In the absence of population-wide restrictions, isolation of infected individuals is key to curtailing transmission. However, the effectiveness of symptom-based isolation in preventing a resurgence depends on the extent of presymptomatic and asymptomatic transmission. We evaluate the contribution of presymptomatic and asymptomatic transmission based on recent individual-level data regarding infectiousness prior to symptom onset and the asymptomatic proportion among all infections. We found that the majority of incidences may be attributable to silent transmission from a combination of the presymptomatic stage and asymptomatic infections. Consequently, even if all symptomatic cases are isolated, a vast outbreak may nonetheless unfold. We further quantified the effect of isolating silent infections in addition to symptomatic cases, finding that over one-third of silent infections must be isolated to suppress a future outbreak below 1% of the population. Our results indicate that symptom-based isolation must be supplemented by rapid contact tracing and testing that identifies asymptomatic and presymptomatic cases, in order to safely lift current restrictions and minimize the risk of resurgence. 
    more » « less
  2. null (Ed.)
    The global public health community is grappling with COVID-2019, a respiratory disease outbreak caused by a novel coronavirus originating from Wuhan, China in late December 2019. A number of countries implemented citizenship-based travel restrictions in late January and early February as an initial response to the outbreak, barring entry to foreign nationals who had previously been in China to prevent the importation of the virus. By early March, when the World Health Organization (WHO) formally declared the outbreak to be a global pandemic, these countries were still relying on travel restrictions as a means of infection control. These travel restrictions constituted restrictions or outright bans on the entry of foreign nationals with a particular citizenship-such policies tend to be popular with a general public with limited public health knowledge. However, travel restrictions are ineffective as an infection control measure and may do more harm than good, depriving the public of its right to health. Furthermore, travel restrictions implemented under the guise of public health policy have historically been used to target migrants and racial and ethnic minorities, violating their rights to nondiscrimination and equal treatment. As states rush to balance public health with politics in their response to this global pandemic, they are sidelining human rights rather than protecting them 
    more » « less
  3. Abstract Most models of the COVID-19 pandemic in the United States do not consider geographic variation and spatial interaction. In this research, we developed a travel-network-based susceptible-exposed-infectious-removed (SEIR) mathematical compartmental model system that characterizes infections by state and incorporates inflows and outflows of interstate travelers. Modeling reveals that curbing interstate travel when the disease is already widespread will make little difference. Meanwhile, increased testing capacity (facilitating early identification of infected people and quick isolation) and strict social-distancing and self-quarantine rules are most effective in abating the outbreak. The modeling has also produced state-specific information. For example, for New York and Michigan, isolation of persons exposed to the virus needs to be imposed within 2 days to prevent a broad outbreak, whereas for other states this period can be 3.6 days. This model could be used to determine resources needed before safely lifting state policies on social distancing. 
    more » « less
  4. Fu, Feng (Ed.)
    Network science has increasingly become central to the field of epidemiology and our ability to respond to infectious disease threats. However, many networks derived from modern datasets are not just large, but dense, with a high ratio of edges to nodes. This includes human mobility networks where most locations have a large number of links to many other locations. Simulating large-scale epidemics requires substantial computational resources and in many cases is practically infeasible. One way to reduce the computational cost of simulating epidemics on these networks is sparsification , where a representative subset of edges is selected based on some measure of their importance. We test several sparsification strategies, ranging from naive thresholding to random sampling of edges, on mobility data from the U.S. Following recent work in computer science, we find that the most accurate approach uses the effective resistances of edges, which prioritizes edges that are the only efficient way to travel between their endpoints. The resulting sparse network preserves many aspects of the behavior of an SIR model, including both global quantities, like the epidemic size, and local details of stochastic events, including the probability each node becomes infected and its distribution of arrival times. This holds even when the sparse network preserves fewer than 10% of the edges of the original network. In addition to its practical utility, this method helps illuminate which links of a weighted, undirected network are most important to disease spread. 
    more » « less
  5. null (Ed.)
    Background: A key challenge in estimating epidemiological parameters for a pandemic such as the initial COVID-19 outbreak in Wuhan is the discrepancy between the officially reported number of infections and the true number of infections. A common approach to tackling the challenge is to use the number of infections exported from the originating city to infer the true number. This approach can only provide a static estimate of the epidemiological parameters before city lockdown because there are almost no exported cases thereafter.Methods: We propose a Bayesian estimation method that dynamically estimates the epidemiological parameters by recovering true numbers of infections from day-to-day official numbers. To illustrate the use of this method, we provide a comprehensive retrospection on how the COVID-19 had progressed in Wuhan from January 19 to March 5, 2020. Particularly, we estimate that the outbreak sizes by January 23 and March 5 were 11,239 [95% CI 4,794–22,372] and 124,506 [95% CI 69,526–265,113], respectively.Results: The effective reproduction number attained its maximum on January 24 (3.42 [95% CI 3.34–3.50]) and became less than 1 from February 7 (0.76 [95% CI 0.65–0.92]). We also estimate the effects of two major government interventions on the spread of COVID-19 in Wuhan.Conclusions: This case study by our proposed method affirms the believed importance and effectiveness of imposing tight non-essential travel restrictions and affirm the importance and effectiveness of government interventions (e.g., transportation suspension and large scale hospitalization) for effective mitigation of COVID-19 community spread. 
    more » « less