Space cooling constitutes >10% of worldwide electricity consumption and is anticipated to rise swiftly due to intensified heatwaves under emerging climate change. The escalating electricity demand for cooling services will challenge already stressed power grids, especially during peak times of demand. To address this, the adoption of demand response to adjust building energy use on the end-user side becomes increasingly important to adapt future smart buildings with rapidly growing renewable energy sources. However, existing demand response strategies predominantly explore sensible cooling energy as flexible building load while neglecting latent cooling energy, which constitutes significant portions of total energy use of buildings in humid climates. Hence, this paper aims to evaluate the demand response potential by adjusting latent cooling energy through ventilation control for typical medium commercial office buildings in four representative cities across different humid climate zones, i.e., Miami, Huston, Atlanta, and New York in the United States (US). As the first step, the sensible heat ratio, defined as sensible cooling load to total building load (involving both sensible and latent load), in different humid climates are calculated. Subsequently, the strategy to adjust building latent load through ventilation control (LLVC) is explored and implemented for demand response considering the balance of energy shifting, indoor air quality, and energy cost. Results reveal that adjusting building ventilation is capable of achieving 30%–40% Heating, Ventilation, and Air-conditioning (HVAC) cooling demand flexibility during HVAC operation while among this, the latent cooling energy contributes 56% ~ 66.4% to the overall demand flexibility. This work provides a feasible way to improve electricity grid flexibility in humid climates, emphasizing the significant role of adjusting latent cooling energy in building demand response. 
                        more » 
                        « less   
                    
                            
                            A Scalable Contract Based Approach for Integrating Building Flexibility to Energy Grids
                        
                    
    
            By arbitraging among consumer comfort margins, buildings energy consumption can be changed by providing flexibility to grids. To manipulate the buildings energy consumption, a new contract-based approach to for multi-zone building heating, ventilation and air-conditioning (HVAC) systems is proposed. The approach includes the real-time markets by changing buildings optimal consumption pattern based on triggers sent by the aggregator. Also to decrease the energy consumption of buildings, the user is allowed to select the time-slots and rewards are provided to the user for aggregating flexibility. The aggregator bundles flexibility from the buildings at different time-slots and sells in real-time markets. The idea in aggregator's problem is to maximize aggregator's profits by selling flexibility in real-time markets (RTM) while ensuring the provisioning of flexibility from the buildings through incentives. To address this problem, we formulate it as a distributed optimization problem and then provide a method to solve it which provides good scalability, a requirement for large commercial buildings with multiple zones to participate in RTM. We illustrate the scalability and performance of the contract-based approach and solution technique in a building with 200 zones. Also, user participation based on their time-preferences is included in the proposed optimization. Finally, a scalable technique is shown which can be adopted in existing building automation systems. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1646612
- PAR ID:
- 10213776
- Date Published:
- Journal Name:
- 2019 18th European Control Conference (ECC)
- Page Range / eLocation ID:
- 2394-2399
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We present the design and implementation of RECA, a novel human-centric recommender system for co-optimizing energy consumption, comfort and air quality in commercial buildings. Existing works generally optimize these objectives separately, or by only controlling energy consuming resources within the building without directly engaging occupants. We develop a deep reinforcement learning architecture based on multitask learning, demonstrate how it can be used to jointly learn energy savings, comfort and air quality improvements for different actions, and build a recommender system with humans-in-the-loop. Through real deployments in multiple commercial buildings, we found that RECA has the potential to further reduce energy consumption by up to in energy-focused optimization, improve all objectives by in joint optimization, and improve thermal comfort by up to in comfort and air quality focused optimization, over existing solutions.more » « less
- 
            In this work, we present recEnergy, a recommender system for reducing energy consumption in commercial buildings with human-in-the-loop. We formulate the building energy optimization problem as a Markov Decision Process, show how deep reinforcement learning can be used to learn energy saving recommendations, and effectively engage occupants in energy-saving actions. is a recommender system that learns actions with high energy saving potential, actively distribute recommendations to occupants in a commercial building, and utilize feedback from the occupants to learn better energy saving recommendations. Over a four week user study, four different types of energy saving recommendations were trained and learned. improves building energy reduction from a baseline saving (passive-only strategy) of 19% to 26%.more » « less
- 
            Buildings produce a significant share of greenhouse gas (GHG) emissions, making homes and businesses a major factor in climate change. To address this critical challenge, this paper explores achieving net-zero emission through the carbon-aware optimal scheduling of the multi-energy building integrated energy systems (BIES). We integrate advanced technologies and strategies, such as the carbon capture system (CCS), power-to-gas (P2G), carbon tracking, and emission allowance trading, into the traditional BIES scheduling problem. The proposed model enables accurate accounting of carbon emissions associated with building energy systems and facilitates the implementation of low-carbon operations. Furthermore, to address the challenge of accurately assessing uncertainty sets related to forecasting errors of loads, generation, and carbon intensity, we develop a learning-based robust optimization approach for BIES that is robust in the presence of uncertainty and guarantees statistical feasibility. The proposed approach comprises a shape learning stage and a shape calibration stage to generate an optimal uncertainty set that ensures favorable results from a statistical perspective. Numerical studies conducted based on both synthetic and real-world datasets have demonstrated that the approach yields up to 8.2% cost reduction, compared with conventional methods, in assisting buildings to robustly reach net-zero emissions.more » « less
- 
            The thermoelectric module (TEM) is a device that integrates multiple thermoelectric (TE) elements to realize the mutual conversion of heat and power. Due to the advantages of no moving parts and flexible expansion, the application of conventional Bi2Te3-based TEM in buildings has attracted the attention of researchers. On the other hand, the TE behavior of hardened cement composites was found by combining conductive additives with cement. Therefore, a new study on cement-based TEM for building energy harvesting and emperature control is proposed. To simulate the performance of cement-based TEM, a three-dimensional heat transfer model considering temperature-dependent TEM characteristics was established. The validity of the model is verified by comparing the results with commercial simulation software and experiments. Different from the existing analytical models and commercial software, the customized model has greater scalability, optimization, and control flexibility. Through parametric studies, the model can guide the design of TEM and the development of TE cement.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    