skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on October 1, 2025

Title: Net-Zero Scheduling of Multi-Energy Building Energy Systems: A Learning-Based Robust Optimization Approach With Statistical Guarantees
Buildings produce a significant share of greenhouse gas (GHG) emissions, making homes and businesses a major factor in climate change. To address this critical challenge, this paper explores achieving net-zero emission through the carbon-aware optimal scheduling of the multi-energy building integrated energy systems (BIES). We integrate advanced technologies and strategies, such as the carbon capture system (CCS), power-to-gas (P2G), carbon tracking, and emission allowance trading, into the traditional BIES scheduling problem. The proposed model enables accurate accounting of carbon emissions associated with building energy systems and facilitates the implementation of low-carbon operations. Furthermore, to address the challenge of accurately assessing uncertainty sets related to forecasting errors of loads, generation, and carbon intensity, we develop a learning-based robust optimization approach for BIES that is robust in the presence of uncertainty and guarantees statistical feasibility. The proposed approach comprises a shape learning stage and a shape calibration stage to generate an optimal uncertainty set that ensures favorable results from a statistical perspective. Numerical studies conducted based on both synthetic and real-world datasets have demonstrated that the approach yields up to 8.2% cost reduction, compared with conventional methods, in assisting buildings to robustly reach net-zero emissions.  more » « less
Award ID(s):
2338158
PAR ID:
10562977
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Transactions on Sustainable Energy
Volume:
15
Issue:
4
ISSN:
1949-3029
Page Range / eLocation ID:
2675 to 2689
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Reducing buildings’ carbon emissions is an important sustainability challenge. While scheduling flexible building loads has been previously used for a variety of grid and energy optimizations, carbon footprint reduction using such flexible loads poses new challenges since such methods need to balance both energy and carbon costs while also reducing user inconvenience from delaying such loads. This article highlights the potential conflict between electricity prices and carbon emissions and the resulting tradeoffs in carbon-aware and cost-aware load scheduling. To address this tradeoff, we propose GreenThrift, a home automation system that leverages the scheduling capabilities of smart appliances and knowledge of future carbon intensity and cost to reduce both the carbon emissions and costs of flexible energy loads. At the heart of GreenThrift is an optimization technique that automatically computes schedules based on user configurations and preferences. We evaluate the effectiveness of GreenThrift using real-world carbon intensity data, electricity prices, and load traces from multiple locations and across different scenarios and objectives. Our results show that GreenThrift can replicate the offline optimal and retains 97% of the savings when optimizing the carbon emissions. Moreover, we show how GreenThrift can balance the conflict between carbon and cost and retain 95.3% and 85.5% of the potential carbon and cost savings, respectively. 
    more » « less
  2. Reducing our reliance on carbon-intensive energy sources is vital for reducing the carbon footprint of the electric grid. Although the grid is seeing increasing deployments of clean, renewable sources of energy, a significant portion of the grid demand is still met using traditional carbon-intensive energy sources. In this paper, we study the problem of using energy storage deployed in the grid to reduce the grid's carbon emissions. While energy storage has previously been used for grid optimizations such as peak shaving and smoothing intermittent sources, our insight is to use distributed storage to enable utilities to reduce their reliance on their less efficient and most carbon-intensive power plants and thereby reduce their overall emission footprint. We formulate the problem of emission-aware scheduling of distributed energy storage as an optimization problem, and use a robust optimization approach that is well-suited for handling the uncertainty in load predictions, especially in the presence of intermittent renewables such as solar and wind. We evaluate our approach using a state of the art neural network load forecasting technique and real load traces from a distribution grid with 1,341 homes. Our results show a reduction of >0.5 million kg in annual carbon emissions --- equivalent to a drop of 23.3% in our electric grid emissions. 
    more » « less
  3. Heating buildings using fossil fuels such as natural gas, propane and oil makes up a significant proportion of the aggregate carbon emissions every year. Because of this, there is a strong interest in decarbonizing residential heating systems using new technologies such as electric heat pumps. In this paper, we conduct a data-driven optimization study to analyze the potential of replacing gas heating with electric heat pumps to reduce CO 2 emission in a city-wide distribution grid. We conduct an in-depth analysis of gas consumption in the city and the resulting carbon emissions. We then present a flexible multi-objective optimization (MOO) framework that optimizes carbon emission reduction while also maximizing other aspects of the energy transition such as carbon-efficiency, and minimizing energy inefficiency in buildings. Our results show that replacing gas with electric heat pumps has the potential to cut carbon emissions by up to 81%. We also show that optimizing for other aspects such as carbon-efficiency and energy inefficiency introduces tradeoffs with carbon emission reduction that must be considered during transition. Finally, we present a detailed analysis of the implication of proposed transition strategies on the household energy consumption and utility bills, electric grid upgrades, and decarbonization policies. We compute the additional energy demand from electric heat pumps at the household as well as the transformer level and discuss how our results can inform decarbonization policies at city scale. 
    more » « less
  4. The impact of human activity on the climate is a major global challenge that affects human well-being. Buildings are a major source of energy consumption and carbon emissions worldwide, especially in advanced economies such as the United States. As a result, making grids and buildings sustainable by reducing their carbon emissions is emerging as an important step toward societal decarbonization and improving overall human well-being. While prior work on demand response methods in power grids and buildings has targeted peak shaving and price arbitrage in response to price signals, it has not explicitly targeted carbon emission reductions. In this paper, we analyze the flexibility of building loads to quantify the upper limit on their potential to reduce carbon emissions, assuming perfect knowledge of future demand and carbon intensity. Our analysis leverages real-world demand patterns from 1000+ buildings and carbon-intensity traces from multiple regions. It shows that by manipulating the demand patterns of electric vehicles, heating, ventilation, and cooling (HVAC) systems, and battery storage, we can reduce carbon emissions by 26.93% on average and by 54.90% at maximum. Our work advances the understanding of sustainable infrastructure by highlighting the potential for infrastructure design and interventions to significantly reduce carbon footprints, benefiting human well-being. 
    more » « less
  5. null (Ed.)
    By arbitraging among consumer comfort margins, buildings energy consumption can be changed by providing flexibility to grids. To manipulate the buildings energy consumption, a new contract-based approach to for multi-zone building heating, ventilation and air-conditioning (HVAC) systems is proposed. The approach includes the real-time markets by changing buildings optimal consumption pattern based on triggers sent by the aggregator. Also to decrease the energy consumption of buildings, the user is allowed to select the time-slots and rewards are provided to the user for aggregating flexibility. The aggregator bundles flexibility from the buildings at different time-slots and sells in real-time markets. The idea in aggregator's problem is to maximize aggregator's profits by selling flexibility in real-time markets (RTM) while ensuring the provisioning of flexibility from the buildings through incentives. To address this problem, we formulate it as a distributed optimization problem and then provide a method to solve it which provides good scalability, a requirement for large commercial buildings with multiple zones to participate in RTM. We illustrate the scalability and performance of the contract-based approach and solution technique in a building with 200 zones. Also, user participation based on their time-preferences is included in the proposed optimization. Finally, a scalable technique is shown which can be adopted in existing building automation systems. 
    more » « less