The aye-aye (Daubentonia madagascariensis) is one of the 25 most endangered primate species in the world, maintaining amongst the lowest genetic diversity of any primate measured to date. Characterizing patterns of genetic variation within aye-aye populations, and the relative influences of neutral and selective processes in shaping that variation, is thus important for future conservation efforts. In this study, we performed the first whole-genome scans for recent positive and balancing selection in the species, utilizing high-coverage population genomic data from newly sequenced individuals. We generated null thresholds for our genomic scans by creating an evolutionarily appropriate baseline model that incorporates the demographic history of this aye-aye population, and identified a small number of candidate genes. Most notably, a suite of genes involved in olfaction — a key trait in these nocturnal primates — were identified as experiencing long-term balancing selection. We also conducted analyses to quantify the expected statistical power to detect positive and balancing selection in this population using site frequency spectrum-based inference methods, once accounting for the potentially confounding contributions of population history, recombination and mutation rate variation, and purifying and background selection. This work, presenting the first high-quality, genome-wide polymorphism data across the functional regions of the aye-aye genome, thus provides important insights into the landscape of episodic selective forces in this highly endangered species.
more »
« less
Flexible Mixture Model Approaches That Accommodate Footprint Size Variability for Robust Detection of Balancing Selection
Abstract Long-term balancing selection typically leaves narrow footprints of increased genetic diversity, and therefore most detection approaches only achieve optimal performances when sufficiently small genomic regions (i.e., windows) are examined. Such methods are sensitive to window sizes and suffer substantial losses in power when windows are large. Here, we employ mixture models to construct a set of five composite likelihood ratio test statistics, which we collectively term B statistics. These statistics are agnostic to window sizes and can operate on diverse forms of input data. Through simulations, we show that they exhibit comparable power to the best-performing current methods, and retain substantially high power regardless of window sizes. They also display considerable robustness to high mutation rates and uneven recombination landscapes, as well as an array of other common confounding scenarios. Moreover, we applied a specific version of the B statistics, termed B2, to a human population-genomic data set and recovered many top candidates from prior studies, including the then-uncharacterized STPG2 and CCDC169–SOHLH2, both of which are related to gamete functions. We further applied B2 on a bonobo population-genomic data set. In addition to the MHC-DQ genes, we uncovered several novel candidate genes, such as KLRD1, involved in viral defense, and SCN9A, associated with pain perception. Finally, we show that our methods can be extended to account for multiallelic balancing selection and integrated the set of statistics into open-source software named BalLeRMix for future applications by the scientific community.
more »
« less
- PAR ID:
- 10213839
- Editor(s):
- Satta, Yoko
- Date Published:
- Journal Name:
- Molecular Biology and Evolution
- Volume:
- 37
- Issue:
- 11
- ISSN:
- 0737-4038
- Page Range / eLocation ID:
- 3267 to 3291
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The aye-aye (Daubentonia madagascariensis) is one of the 25 most endangered primate species in the world, maintaining amongst the lowest genetic diversity of any primate measured to date. Characterizing patterns of genetic variation within aye-aye populations, and the relative influences of neutral and selective processes in shaping that variation, is thus important for future conservation efforts. In this study, we performed the first whole-genome scans for positive and balancing selection in the species, utilizing high-coverage population genomic data from newly sequenced individuals. We generated null thresholds for our genomic scans by creating an evolutionarily appropriate baseline model that incorporates the demographic history of this aye-aye population, and identified a small number of candidate genes. Most notably, a suite of genes involved in olfaction—a key trait in these nocturnal primates—were identified as experiencing long-term balancing selection. We also conducted analyses to quantify the expected statistical power to detect positive and balancing selection in this population using site frequency spectrum–based inference methods, once accounting for the potentially confounding contributions of population history, mutation and recombination rate variation, as well as purifying and background selection. This work, presenting the first high-quality, genome-wide polymorphism data across the functional regions of the aye-aye genome, thus provides important insights into the landscape of episodic selective forces in this highly endangered species.more » « less
-
Kim, Yuseob (Ed.)Abstract Natural selection leaves a spatial pattern along the genome, with a haplotype distribution distortion near the selected locus that fades with distance. Evaluating the spatial signal of a population-genetic summary statistic across the genome allows for patterns of natural selection to be distinguished from neutrality. Considering the genomic spatial distribution of multiple summary statistics is expected to aid in uncovering subtle signatures of selection. In recent years, numerous methods have been devised that consider genomic spatial distributions across summary statistics, utilizing both classical machine learning and deep learning architectures. However, better predictions may be attainable by improving the way in which features are extracted from these summary statistics. We apply wavelet transform, multitaper spectral analysis, and S-transform to summary statistic arrays to achieve this goal. Each analysis method converts one-dimensional summary statistic arrays to two-dimensional images of spectral analysis, allowing simultaneous temporal and spectral assessment. We feed these images into convolutional neural networks and consider combining models using ensemble stacking. Our modeling framework achieves high accuracy and power across a diverse set of evolutionary settings, including population size changes and test sets of varying sweep strength, softness, and timing. A scan of central European whole-genome sequences recapitulated well-established sweep candidates and predicted novel cancer-associated genes as sweeps with high support. Given that this modeling framework is also robust to missing genomic segments, we believe that it will represent a welcome addition to the population-genomic toolkit for learning about adaptive processes from genomic data.more » « less
-
Background: Genetic variation provides a foundation for understanding evolution. With the rise of artificial intelligence, machine learning has emerged as a powerful tool for identifying genomic footprints of evolutionary processes through simulation-based predictive modeling. However, existing approaches require prior knowledge of the factors shaping genetic variation, whereas uncovering anomalous genomic regions regardless of their causes remains an equally important and complementary endeavor. Methods: To address this problem, we introduce ANDES (ANomaly DEtection using Summary statistics), a suite of algorithms that apply statistical techniques to extract features for unsupervised anomaly detection. A key innovation of ANDES is its ability to account for autocovariation due to linkage disequilibrium by fitting curves to contiguous windows and computing their first and second derivatives, thereby capturing the “velocity” and “acceleration” of genetic variation. These features are then used to train models that flag biologically significant or artifactual regions. Results: Application to human genomic data demonstrates that ANDES successfully detects anomalous regions that colocalize with genes under positive or balancing selection. Moreover, these analyses reveal a non-uniform distribution of anomalies, which are enriched in specific autosomes, intergenic regions, introns, and regions with low GC content, repetitive sequences, and poor mappability. Conclusions: ANDES thus offers a novel, model-agnostic framework for uncovering anomalous genomic regions in both model and non-model organisms.more » « less
-
Abstract SummaryThe growing availability of genomewide polymorphism data has fueled interest in detecting diverse selective processes affecting population diversity. However, no model-based approaches exist to jointly detect and distinguish the two complementary processes of balancing and positive selection. We extend the BalLeRMixB-statistic framework described in Cheng and DeGiorgio (2020) for detecting balancing selection and present BalLeRMix+, which implements five B statistic extensions based on mixture models to robustly identify both types of selection. BalLeRMix+ is implemented in Python and computes the composite likelihood ratios and associated model parameters for each genomic test position. Availability and implementationBalLeRMix+ is freely available at https://github.com/bioXiaoheng/BallerMixPlus. Supplementary informationSupplementary data are available at Bioinformatics online.more » « less
An official website of the United States government

