Abstract A comprehensive cross‐biome assessment of major nitrogen (N) species that includes dissolved organic N (DON) is central to understanding interactions between inorganic nutrients and organic matter in running waters. Here, we synthesize stream water N chemistry across biomes and find that the composition of the dissolved N pool shifts from highly heterogeneous to primarily comprised of inorganic N, in tandem with dissolved organic matter (DOM) becoming more N‐rich, in response to nutrient enrichment from human disturbances. We identify two critical thresholds of total dissolved N (TDN) concentrations where the proportions of organic and inorganic N shift. With low TDN concentrations (0–1.3 mg/L N), the dominant form of N is highly variable, and DON ranges from 0% to 100% of TDN. At TDN concentrations above 2.8 mg/L, inorganic N dominates the N pool and DON rarely exceeds 25% of TDN. This transition to inorganic N dominance coincides with a shift in the stoichiometry of the DOM pool, where DOM becomes progressively enriched in N and DON concentrations are less tightly associated with concentrations of dissolved organic carbon (DOC). This shift in DOM stoichiometry (defined as DOC:DON ratios) suggests that fundamental changes in the biogeochemical cycles of C and N in freshwater ecosystems are occurring across the globe as human activity alters inorganic N and DOM sources and availability. Alterations to DOM stoichiometry are likely to have important implications for both the fate of DOM and its role as a source of N as it is transported downstream to the coastal ocean.
more »
« less
Antiaromaticity gain increases the potential for n-type charge transport in hydrogen-bonded π-conjugated cores
Density functional theory computations suggest that formally non-aromatic organic dyes, like diketopyrrolopyrrole, naphthodipyrrolidone, indigo, and isoindigo, show increased [4 n ] π-antiaromatic character and decreased LUMO orbital energies upon hydrogen bonding, making them suitable molecular candidates for applications in n-type organic field effect transistors.
more »
« less
- Award ID(s):
- 1751370
- PAR ID:
- 10213898
- Date Published:
- Journal Name:
- Chemical Communications
- Volume:
- 56
- Issue:
- 13
- ISSN:
- 1359-7345
- Page Range / eLocation ID:
- 2008 to 2011
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Codenitrification is a reactive nitrogen (N) removal pathway producing hybrid dinitrogen (N2) by combining nitrite (NO2–) and a partner-N substrate. Abiotic codenitrification also produces hybrid N2 through nitrosation of organic N by NO2–, but it is poorly constrained in soil N cycles. We determined the importance of abiotic codenitrification in soils and examined factors controlling abiotic codenitrification using live soils, sterile soils, and sterile solutions. Abiotic codenitrification in sterile soils ranged from 0.12 ± 0.001 to 0.60 ± 0.08 nmoles 29N2-N g–1 day–1, which accounts for 2.3 to 8.2% of total N2 production measured in live soils. Increased abiotic N2 production was observed in soils with the addition of an organic N partner (glutamine). Consistent with previous work, higher rates were observed in lower-pH soils, but the highest rate was found in the soil with the highest carbon:nitrogen (C:N) ratio. We further investigated a range of organic N partners and the influence of concentration and pH on abiotic codenitrification in solution. Similar to sterile soil incubations, abiotic 29N2 production was negatively correlated with increasing pH in solution. Greater rates of abiotic 29N2 production were measured as the substrate concentration increased and pH decreased. Solution experiments also showed that addition of organic N partners increased abiotic codenitrification rates, which are positively correlated with the C:N ratios of organic N partners. This is the first study demonstrating the importance of N removal through abiotic codenitrification in acidic soils and the C:N ratio of organic N partners as a controlling factor in abiotic codenitrification.more » « less
-
null (Ed.)Abstract The capacity of soil as a carbon (C) sink is mediated by interactions between organic matter and mineral phases. However, previously proposed layered accumulation of organic matter within aggregate organo–mineral microstructures has not yet been confirmed by direct visualization at the necessary nanometer-scale spatial resolution. Here, we identify disordered micrometer-size organic phases rather than previously reported ordered gradients in C functional groups. Using cryo-electron microscopy with electron energy loss spectroscopy (EELS), we show organo–organic interfaces in contrast to exclusively organo–mineral interfaces. Single-digit nanometer-size layers of C forms were detected at the organo–organic interface, showing alkyl C and nitrogen (N) enrichment (by 4 and 7%, respectively). At the organo–mineral interface, 88% (72–92%) and 33% (16–53%) enrichment of N and oxidized C, respectively, indicate different stabilization processes than at organo–organic interfaces. However, N enrichment at both interface types points towards the importance of N-rich residues for greater C sequestration.more » « less
-
Abstract Various soil health indicators that measure a chemically defined fraction of nitrogen (N) or a process related to N cycling have been proposed to quantify the potential to supply N to crops, a key soil function. We evaluated five N indicators (total soil N, autoclavable citrate extractable N, water‐extractable organic N, potentially mineralizable N, andN‐acetyl‐β‐D‐glucosaminidase activity) at 124 sites with long‐term experiments across North America evaluating a variety of managements. We found that 59%–81% of the variation in N indicators was among sites, with indicator values decreasing with temperature and increasing with precipitation and clay content. The N indicators increased from 6%–39% in response to decreasing tillage, cover cropping, retaining residue, and applying organic sources of nutrients. Overall, increasing the quantity of organic inputs, whether from increased residue retention, cover cropping, or rotations with higher biomass, resulted in higher values of the N indicators. Although N indicators responded to management in similar ways, the analysis cost and availability of testing laboratories is highly variable. Further, given the strong relationships of the N indicators with carbon (C) indicators, measuring soil organic C along with 24‐h potential C mineralization could be used as a proxy for N supply instead of measuring potentially mineralizable N or any other N indicator directly.more » « less
-
Dissolved organic matter (DOM) is a complex mixture of organic compounds found in all natural waters. Its composition affects its reactivity towards numerous processes. Its composition is a function of both its source (e.g., allochthonous or autochthonous) as well as the extent of environmental processing it has undergone (e.g., chemical or biological degradation). Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) allows for the characterization of dissolved organic matter at the molecular level. The water sample was collected near the NTL-LTER research buoy on Lake Mendota. Formula assignments were made to raw mass to charge ratios detected in the mass spectrum using a custom processing script and resulting in a list of chemical formulas making up the DOM sample.more » « less
An official website of the United States government

