Abstract Most soil carbon (C) is in the form of soil organic matter (SOM), the composition of which is controlled by the plant–microbe–soil continuum. The extent to which plant and microbial inputs contribute to persistent SOM has been linked to edaphic properties such as mineralogy and aggregation. However, it is unknown how variation in plant inputs, microbial community structure, and soil physical and chemical attributes interact to influence the chemical classes that comprise SOM pools. We used two long‐term biofuel feedstock field experiments to test the influence of cropping systems (corn and switchgrass) and soil characteristics (sandy and silty loams) on microbial selection and SOM chemistry. Cropping system had a strong influence on water‐extractable organic C chemistry with perennial switchgrass generally having a higher chemical richness than the annual corn cropping system. Nonetheless, cropping system was a less influential driver of soil microbial community structure and overall C chemistry than soil type. Soil type was especially influential on fungal community structure and the chemical composition of the chloroform‐extractable C. Although plant inputs strongly influence the substrates available for decomposition and SOM formation, total C and nitrogen (N) did not differ between cropping systems within either site. We conclude this is likely due to enhanced microbial activity under the perennial cropping system. Silty soils also had a higher activity of phosphate and C liberating enzymes. After 8 years, silty loams still contained twice the total C and N as sandy loams, with no significant response to biofuel cropping system inputs. Together, these results demonstrate that initial site selection is critical to plant–microbe interactions and substantially impacts the potential for long‐term C accrual in soils under biofuel feedstock production.
more »
« less
An evaluation of nitrogen indicators for soil health in long‐term agricultural experiments
Abstract Various soil health indicators that measure a chemically defined fraction of nitrogen (N) or a process related to N cycling have been proposed to quantify the potential to supply N to crops, a key soil function. We evaluated five N indicators (total soil N, autoclavable citrate extractable N, water‐extractable organic N, potentially mineralizable N, andN‐acetyl‐β‐D‐glucosaminidase activity) at 124 sites with long‐term experiments across North America evaluating a variety of managements. We found that 59%–81% of the variation in N indicators was among sites, with indicator values decreasing with temperature and increasing with precipitation and clay content. The N indicators increased from 6%–39% in response to decreasing tillage, cover cropping, retaining residue, and applying organic sources of nutrients. Overall, increasing the quantity of organic inputs, whether from increased residue retention, cover cropping, or rotations with higher biomass, resulted in higher values of the N indicators. Although N indicators responded to management in similar ways, the analysis cost and availability of testing laboratories is highly variable. Further, given the strong relationships of the N indicators with carbon (C) indicators, measuring soil organic C along with 24‐h potential C mineralization could be used as a proxy for N supply instead of measuring potentially mineralizable N or any other N indicator directly.
more »
« less
- PAR ID:
- 10470818
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- John Wiley & Sons, Ltd
- Date Published:
- Journal Name:
- Soil Science Society of America Journal
- Volume:
- 87
- Issue:
- 4
- ISSN:
- 0361-5995
- Page Range / eLocation ID:
- 868 to 884
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Monitoring soil nitrogen (N) dynamics in agroecosystems is foundational to soil health management and is critical for maximizing crop productivity in contrasting management systems. The newly established soil health indicator, autoclaved‐citrate extractable (ACE) protein, measures an organically bound pool of N. However, the relationship between ACE protein and other N‐related soil health indicators is poorly understood. In this study, ACE protein is investigated in relation to other soil N measures at four timepoints across a single growing season along a 33‐year‐old replicated eight‐system management intensity gradient located in southwest Michigan, USA. On average, polyculture perennial systems that promote soil health had two to four times higher (2–12 g kg−1higher) ACE protein concentrations compared to annual cropping and monoculture perennial systems. In addition, ACE protein fluctuated less than total soil N, NH4+‐N, and NO3−‐N across the growing season, which shows the potential for ACE protein to serve as a reliable indicator of soil health and soil organic N status. Furthermore, ACE protein was positively correlated with total soil N and NH4+‐N and negatively correlated with NO3−‐N at individual sampling timepoints across the management intensity gradient. In addition, ACE protein, measured toward the end of the growing season, showed a consistent and positive trend with yield across different systems. This study highlights the potential for ACE protein as an indicator of sustainable management practices, SOM cycling, and soil health and calls for more studies investigating its relationship with crop productivity.more » « less
-
Abstract Wildfire is a disturbance expected to increase in frequency and severity, changes that may impact carbon (C) dynamics in the soil ecosystem. Fire changes the types of C sources available to soil microbes, increasing pyrogenic C and coarse downed wood, and if there is substantial tree mortality, decreasing C from root exudates and leaf litter. To investigate the impact of this shift in the composition of C resources on microbial processes driving C cycling, we examined microbial activity in soil sampled from an Oregon burn 1 year after fire from sites spanning a range in soil burn severity from unburned to highly burned. We found evidence that postfire rhizosphere priming loss may reduce soil C loss after fire. We measured the potential activity of C‐acquiring and nitrogen (N)‐acquiring extracellular enzymes and contextualized the microbial resource demand using measurements of mineralizable C and N. Subsurface mineralizable C and N were unaltered by fire and negatively correlated with hydrolytic extracellular enzyme activity (EEA) in unburned, but not burned sites. EEA was lower in burned sites by up to 46%, but only at depths below 5 cm, and with greater decreases in sites with high soil burn severity. These results are consistent with a subsurface mechanism driven by tree mortality. We infer that in sites with high tree mortality, subsurface EEAs decreased due to loss of rhizosphere priming and that inputs of dead roots contributed to mineralizable C stabilization.more » « less
-
Associated with a project that was based upon the assumption that nitrogen may limit net primary plant production in desert grasslands, this project began measuring available inorganic soil N and potentially mineralizable N of soils at two desert grassland locations. Both available N and potentially mineralizable N were greatest following a drought period in 1989, declined during wetter periods that followed and remained relatively stable until another extended drought period. After drought in 1995-6, both forms of soil N increased, indicating the potential for greater NPP following drought and lower potential NPP during periods of normal precipitation.more » « less
-
Abstract To improve cover crops such as peas (Pisum sativum), as rotational partners, intraspecific variation for cover cropping traits such as nutrient mobilization, carbon deposition, and beneficial microbial recruitment must be identified. The majority of research on cover crops has focused on interspecies comparisons for cover cropping variation with minimal research investigating intraspecies variation. To address if variation of cover cropping traits is present within a cover cropping species, we grew 15 diverse accessions (four modern cultivars, three landraces, and eight wild accessions) of pea in a certified organic setting. We measured various cover cropping traits, such as nutrient mobilization, soil organic matter deposition, and microbial recruitment, and quantified the effect of pea accession on the growth and yield of a subsequently planted crop of corn (Zea mays). We discovered that the domestication history of pea has a significant impact on soil properties. Specifically, domesticated peas (modern cultivars and landraces) had higher average plant–soil feedback values for amounts of nitrogen, carbon, and manganese compared to wild peas. Additionally, no variation for prokaryotic recruitment (α‐ and β‐diversity) was observed within pea; however, we did observe significant variation for fungal recruitment (α‐ and β‐diversity) due to domestication and accession. Our results demonstrate that there is variation present in peas, and likely all crops, that can be selected to improve them as rotational partners to ultimately boost crop yields in sustainable agroecosystems.more » « less
An official website of the United States government

