Baird’s rule explains why and when excited-state proton transfer (ESPT) reactions happen in organic compounds. Bifunctional compounds that are [4 n + 2] π-aromatic in the ground state, become [4 n + 2] π-antiaromatic in the first 1 ππ* states, and proton transfer (either inter- or intramolecularly) helps relieve excited-state antiaromaticity. Computed nucleus-independent chemical shifts (NICS) for several ESPT examples (including excited-state intramolecular proton transfers (ESIPT), biprotonic transfers, dynamic catalyzed transfers, and proton relay transfers) document the important role of excited-state antiaromaticity. o- Salicylic acid undergoes ESPT only in the “antiaromatic” S 1 ( 1 ππ*) state, but not in the “aromatic” S 2 ( 1 ππ*) state. Stokes’ shifts of structurally related compounds [e.g., derivatives of 2-(2-hydroxyphenyl)benzoxazole and hydrogen-bonded complexes of 2-aminopyridine with protic substrates] vary depending on the antiaromaticity of the photoinduced tautomers. Remarkably, Baird’s rule predicts the effect of light on hydrogen bond strengths; hydrogen bonds that enhance (and reduce) excited-state antiaromaticity in compounds become weakened (and strengthened) upon photoexcitation.
more »
« less
How does excited-state antiaromaticity affect the acidity strengths of photoacids?
Photoacids like substituted naphthalenes (X = OH, NH 3 + , COOH) are aromatic in the S 0 state and antiaromatic in the S 1 state. Nucleus independent chemical shifts analyses reveal that deprotonation relieves antiaromaticity in the excited conjugate base, and that the degree of “antiaromaticity relief” explains why some photoacids are stronger than others.
more »
« less
- Award ID(s):
- 1751370
- PAR ID:
- 10213902
- Date Published:
- Journal Name:
- Chemical Communications
- Volume:
- 56
- Issue:
- 60
- ISSN:
- 1359-7345
- Page Range / eLocation ID:
- 8380 to 8383
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Sunlight‐driven photochemical reactions are an important tool for sustainable organic synthesis. However, compared with ground states, for which the effects of structure on properties and reactivity are well established, the understanding of excited states is limited. In particular, an improved understanding of aromaticity and antiaromaticity in excited states is necessary to develop strategic photochemical methods for synthesizing polycyclic aromatic compounds. Herein, using density functional theory (DFT)‐optimized structures, the ground singlet (S0) and lowest triplet (T1) states of coronene and corannulene were compared. Bond length analysis demonstrated that both triplet corannulene and triplet coronene bear a partial resemblance to benzene. Nucleus‐independent chemical shift (NICS(0), NICS(1.7)ZZ, NICS scans) and anisotropy of the induced current density (ACID) calculations were carried out to compare the induced magnetic currents in these molecules. This analysis demonstrated rather weak π‐conjugation and partial antiaromaticity in the S0state of each molecule. In contrast, a combination of circular induced currents and pronounced antiaromaticity was found in the T1state of each molecule. However, the T1of corannulene exhibited higher stability, which should facilitate functionalization. Consequently, corannulene is considered more suitable for photochemical applications.more » « less
-
Abstract A new strategy to stabilize free radicals electronically is described by conjugating formally antiaromatic substituents to the free radical. With an antiaromatic substituent, the radical acts as an electron sink to allow configuration mixing of a low‐energy zwitterionic state that provides antiaromaticity relief to the substituent. A combination of X‐ray crystallography, VT‐EPR and VT‐UV/Vis spectroscopy, as well as computational analysis, was used to investigate this phenomenon. We find that this strategy of antiaromaticity relief is successful at stabilizing radicals, but only if the antiaromatic substituent is constrained to be planar by synthetically imposed conformational restraints that enable state mixing. This work leads to the counterintuitive finding that increasing the antiaromaticity of the radical substituent leads to greater radical stability, providing proof of concept for a new stereoelectronic approach for stabilizing free radicals.more » « less
-
Abstract Herein we report the synthesis and characterization of four donor/acceptor‐fuseds‐indacenes via the late‐stage oxidation of a family of unsymmetrical benzofuran/benzothiophene‐s‐indacene regioisomers. A thorough study of their properties through experimental and computational analysis has revealed the effect of asymmetry on the molecular properties associated with antiaromaticity, as well as a strong correlation between antiaromaticity and intramolecular charge transfer (ICT). The strength of the charge transfer depends on the fusion orientation of the donor and acceptor motifs relative to thes‐indacene core. The two most antiaromatic oxidized isomers exhibit strong evidence of ICT with 30 and 40 nm solvatochromic shifts.more » « less
-
null (Ed.)The Watson–Crick A·T and G·C base pairs are not only electronically complementary, but also photochemically complementary. Upon UV irradiation, DNA base pairs undergo efficient excited-state deactivation through electron driven proton transfer (EDPT), also known as proton-coupled electron transfer (PCET), at a rate too fast for other reactions to take place. Why this process occurs so efficiently is typically reasoned based on the oxidation and reduction potentials of the bases in their electronic ground states. Here, we show that the occurrence of EDPT can be traced to a reversal in the aromatic/antiaromatic character of the base upon photoexcitation. The Watson–Crick A·T and G·C base pairs are aromatic in the ground state, but the purines become highly antiaromatic and reactive in the first 1 ππ* state, and transferring an electron and a proton to the pyrimidine relieves this excited-state antiaromaticity. Even though proton transfer proceeds along the coordinate of breaking a N–H σ-bond, the chromophore is the π-system of the base, and EDPT is driven by the strive to alleviate antiaromaticity in the π-system of the photoexcited base. The presence and absence of alternative excited-state EDPT routes in base pairs also can be explained by sudden changes in their aromatic and antiaromatic character upon photoexcitation.more » « less
An official website of the United States government

