Abstract Whether tetra‐tert‐butyl‐s‐indacene is a symmetricD2hstructure or a bond‐alternatingC2hstructure remains a standing puzzle. Close agreement between experimental and computed proton chemical shifts based on minima structures optimized at the M06‐2X, ωB97X‐D, and M11 levels confirm a bond‐localizedC2hsymmetry, which is consistent with the expected strong antiaromaticity of TtB‐s‐indacene. 
                        more » 
                        « less   
                    This content will become publicly available on December 5, 2025
                            
                            Intramolecular Charge Transfer in Antiaromatic Donor/Acceptor‐Fused s ‐Indacenes
                        
                    
    
            Abstract Herein we report the synthesis and characterization of four donor/acceptor‐fuseds‐indacenes via the late‐stage oxidation of a family of unsymmetrical benzofuran/benzothiophene‐s‐indacene regioisomers. A thorough study of their properties through experimental and computational analysis has revealed the effect of asymmetry on the molecular properties associated with antiaromaticity, as well as a strong correlation between antiaromaticity and intramolecular charge transfer (ICT). The strength of the charge transfer depends on the fusion orientation of the donor and acceptor motifs relative to thes‐indacene core. The two most antiaromatic oxidized isomers exhibit strong evidence of ICT with 30 and 40 nm solvatochromic shifts. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2246964
- PAR ID:
- 10574982
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 64
- Issue:
- 9
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Unraveling the intriguing aspects of the intramolecular charge transfer (ICT) phenomenon of multi‐modular donor‐acceptor‐based push–pull systems are of paramount importance considering their promising applications, particularly in solar energy harvesting and light‐emitting devices. Herein, a series of symmetrical and unsymmetrical donor‐acceptor chromophores1–6, are designed and synthesized by the Corey‐Fuchs reaction via Evano's condition followed by [2+2] cycloaddition retroelectrocyclic ring‐opening reaction with strong electron acceptors TCNE and TCNQ in good yields (~60–85 %). The photophysical, electrochemical, and computational studies are investigated to explore the effect of incorporation of strong electron acceptors 1,1,4,4‐tetracyanobuta‐1,3‐diene (TCBD) and dicyanoquinodimethane (DCNQ) with phenothiazine (PTZ) donor. An additional low‐lying broad absorption band extended towards the near‐infrared (NIR) region suggests charge polarization after the introduction of the electron acceptors in both symmetrical and asymmetrical systems, leading to such strong ICT bands. The electrochemical properties reveal that reduction potentials of3and6are lower than those of2and5, suggesting DCNQ imparts more on the electronic properties and hence largely contributes to the stabilization of LUMO energy levels than TCBD, in line with theoretical observations. Relative positions of the frontier orbitals on geometry‐optimized structures further support accessing donor‐acceptor sites responsible for the ICT transitions. Eventually, ultrafast carrier dynamics of the photoinduced species are investigated by femtosecond transient absorption studies to identify their spectral characteristics and target analysis further provides information about different excited states photophysical events including ICT and their associated time profiles. The key findings obtained here related to excited state dynamical processes of these newly synthesized systems are believed to be significant in advancing their prospect of utilization in solar energy conversion and related photonic applications.more » « less
- 
            Abstract A set of fully‐conjugated indenofluorenes has been synthesized and confirmed by solid‐state structure analysis. The indeno[2,1‐c]fluorenes and their benzo‐fused analogues all contain the antiaromaticas‐indacene core. The molecules possess high electron affinities and show a broad absorption that reaches into the near‐IR region of the electromagnetic spectrum. All of the featured compounds reversibly accept up to two electrons as revealed by cyclic voltammetry. Analysis of molecule tropicity using NICS‐XY scan calculations shows that, while theas‐indacene core is less paratropic thans‐indacene, benz[a]‐annulation further reduces the antiaromaticity of the core. Antiaromatic strength of theas‐indacene core can also be tuned by the position of fusion of additional arenes on the outer rings.more » « less
- 
            null (Ed.)Donor–π-acceptor (D–π-A) fluorophores consisting of a donor unit, a π linker, and an acceptor moiety have attracted attention in the last decade. In this study, we report the synthesis, characterization, optical properties, TD-DFT, and cytotoxicity studies of 17 near infrared (NIR) D–π-A analogs which have not been reported so far to the best of our knowledge. These fluorophores have chloroacrylic acid as the acceptor unit and various donor units such as indole, benzothiazole, benzo[ e ]indole, and quinoline. The fluorophores showed strong absorption in the NIR (700–970 nm) region due to their enhanced intramolecular charge transfer (ICT) between chloroacrylic acid and the donor moieties connected with the Vilsmeier–Haack linker. The emission wavelength maxima of the fluorophores were in between 798 and 870 nm. Compound 20 with a 4-quinoline donor moiety showed an emission wavelength above 1000 nm in the NIR II window. The synthesized fluorophores were characterized by 1 H NMR and 13 C NMR, and their optical properties were studied. Time dependent density functional theory (TD-DFT) calculations showed that the charge transfer occurs from the donor groups (indole, benzothiazole, benzo[ e ]indole, and quinoline) to the acceptor chloroacrylic acid moiety. Fluorophores with [HOMO] to [LUMO+1] transitions were shown to possess a charge separation character. The cytotoxicity of selected fluorophores, 4 , 7 , 10 and 12 was investigated against breast cancer cell lines and they showed better activity than the anti-cancer agent docetaxel.more » « less
- 
            Abstract Electron-deficient π-conjugated functional dyes lie at the heart of organic optoelectronics. Adding nitro groups to aromatic compounds usually quenches their fluorescence via inter-system crossing (ISC) or internal conversion (IC). While strong electronic coupling of the nitro groups with the dyes ensures the benefits from these electron-withdrawing substituents, it also leads to fluorescence quenching. Here, we demonstrate how such electronic coupling affects the photophysics of acceptor–donor–acceptor fluorescent dyes, with nitrophenyl acceptors and a pyrrolo[3,2-b]pyrrole donor. The position of the nitro groups and the donor-acceptor distance strongly affect the fluorescence properties of thebis-nitrotetraphenylpyrrolopyrroles. Concurrently, increasing solvent polarity quenches the emission that recovers upon solidifying the media. Intramolecular charge transfer (CT) and molecular dynamics, therefore, govern the fluorescence of these nitro-aromatics. While balanced donor-acceptor coupling ensures fast radiative deactivation and slow ISC essential for large fluorescence quantum yields, vibronic borrowing accounts for medium dependent IC via back CT. These mechanistic paradigms set important design principles for molecular photonics and electronics.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
