skip to main content


Title: Effect of Varying Wind Intensity, Forward Speed, and Surface Pressure on Storm Surges of Hurricane Rita
Hurricane storm surges are influenced by several factors, including wind intensity, surface pressure, forward speed, size, angle of approach, ocean bottom depth and slope, shape and geographical features of the coastline. The relative influence of each factor may be amplified or abated by other factors that are acting at the time of the hurricane’s approach to the land. To understand the individual and combined influence of wind intensity, surface pressure and forward speed, a numerical experiment is conducted using Advanced CIRCulation + Simulating Waves Nearshore (ADCIRC + SWAN) by performing hindcasts of Hurricane Rita storm surges. The wind field generated by Ocean Weather Inc. (OWI) is used as the base meteorological forcing in ADCIRC + SWAN. All parameters are varied by certain percentages from those in the OWI wind field. Simulation results are analyzed for maximum wind intensity, wind vector pattern, minimum surface pressure, forward speed, maximum water elevation, station water elevation time series, and high water marks. The results for different cases are compared against each other, as well as with observed data. Changes in the wind intensity have the greatest impact, followed by the forward speed and surface pressure. The combined effects of the wind intensity and forward speed are noticeably different than their individual effects.  more » « less
Award ID(s):
2000283 1401062
NSF-PAR ID:
10213939
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Marine Science and Engineering
Volume:
9
Issue:
2
ISSN:
2077-1312
Page Range / eLocation ID:
128
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hurricane storm surges are influenced by wind intensity, forward speed, width and slope of the ocean bottom, central pressure, angle of approach, shape of coastal lines, local features, and storm size. A numerical experiment is conducted using the Advanced Circulation + Simulation and Simulating Waves Nearshore (ADCIRC + SWAN) coupled model for understanding the effects of wind intensity, forward speed, and wave on the storm surges caused by Hurricane Harvey. The ADCIRC + SWAN is used to simulate hurricane storm surges and waves. The wind fields of Hurricane Harvey were reconstructed from observed data, aided by a variety of methodologies and analyses conducted by Ocean Weather Inc (OWI) after the event. These reconstructed wind fields were used as the meteorological forcing in the base case in ADCIRC+SWAN to investigate the storm surges caused by the hurricane. Hurricane Harvey was the second most costly hurricane in the United States, causing severe urban flooding by dropping more than 60 inches of rainfall in Texas. The hurricane made three landfalls, with its first landfall as a Category 4 based on the Saffir–Simpson Hurricane Wind Scale (SSHWS), with wind intensities of 212.98 km/h (59 m/s). The storm surges caused by Hurricane Harvey were unique due to the slow speed, crooked tracks, triple landfalls in the USA, and excessive rain. The model’s storm surge and wave results were compared against observed data. High water marks at 21 locations and time series at 12 National Oceanic and Atmospheric Administration (NOAA) gauges were compared with the generated results. Several cases were investigated by increasing or decreasing the wind intensity or hurricane forward speed by 25% of the OWI wind and pressure data. The effects of the wave were analyzed by comparing the results obtained from ADCIRC + SWAN (with waves) and ADCIRC (without waves) models. The study found that the changes in wind intensity had the most significant effect on storm surges, followed by wave and forward speed changes. This study signifies the importance of considering these factors to enhance accuracy in predicting storm surges.

     
    more » « less
  2. Dynamically-coupled SWAN and ADCIRC models have been applied to enhance the predictions of extreme waves and storm surges induced by hurricanes and sea level rise (SLR) in the Gulf of Mexico. The model performance was evaluated using Hurricane Michael, a Category-5 hurricane, as a case study. Modeled wave heights were compared to the observations. Results indicate that the dynamically-coupled SWAN-ADCIRC models substantially enhance the modeling accuracy. By comparing to the maximum observed 2.69 m of wave height near the hurricane landing site, the error is 0.04 m by the SWAN-ADCIRC models in comparison to the 0.39 m by the SWAN stand-alone simulation. Effects of sea level rise on hurricane wave heights were investigated under four SLR scenarios of 0.2m, 0.5m, 1m, and 1.5m. Results indicate that, as sea level rises, wave heights increase non-linearly in shallow waters near the hurricane landing site. At the wave observation station near the hurricane landing site, the ratio of the wave-height change to SLR increases to 117% and the ratio of the combined wave-surge change to SLR increases to 265%. Analysis indicates that this is due to the substantial percentage changes in water depth occurring in shallow water compared to deep water caused by SLR. 
    more » « less
  3. In this study, it is demonstrated that hurricane wind intensity, forward speed, pressure, and track play an important role on the generation and propagation of coastal storm surges. Hurricane Irma, which heavily impacted the entire Florida peninsula in 2017, is used to study the storm surge sensitivity to varying storm characteristics. Results show that the west coast experiences a negative surge due to offshore wind of the approaching storm, but the positive surge returns after the hurricane eye passes over a location and wind became onshore. In the west coast peak, surges are intensified by an increase in onshore wind intensity and forward speed. In the Florida Keys, peak surges are intensified by an increase in wind intensity, a decrease in forward speed and a decrease in pressure. In southeast and east Florida, peak surges are intensified by decrease in pressure, although overall surges are less significant as the water can slide along the coastline. In the recessed coastline of Georgia-Carolinas, maximum surge is elevated by an increase in onshore wind intensity. Shifting the track westward increases peak surges on the west coast, while shifting the track eastward increases peak surge on the east coast. The results demonstrate a new understanding about the sensitivity of surge to varying parametric conditions and the importance of considering changes in the coastline orientation in storm surge predictions. 
    more » « less
  4. Abstract An integrated storm surge modeling and traffic analysis were conducted in this study to assess the effectiveness of hurricane evacuations through a case study of Hurricane Irma. The Category 5 hurricane in 2017 caused a record evacuation with an estimated 6.8 million people relocating statewide in Florida. The Advanced Circulation (ADCIRC) model was applied to simulate storm tides during the hurricane event. Model validations indicated that simulated pressures, winds, and storm surge compared well with observations. Model simulated storm tides and winds were used to estimate the area affected by Hurricane Irma. Results showed that the storm surge and strong wind mainly affected coastal counties in south-west Florida. Only moderate storm tides (maximum about 2.5 m) and maximum wind speed about 115 mph were shown in both model simulations and Federal Emergency Management Agency (FEMA) post-hurricane assessment near the area of hurricane landfall. Storm surges did not rise to the 100-year flood elevation level. The maximum wind was much below the design wind speed of 150–170 mph (Category 5) as defined in Florida Building Code (FBC) for south Florida coastal areas. Compared with the total population of about 2.25 million in the six coastal counties affected by storm surge and Category 1–3 wind, the statewide evacuation of approximately 6.8 million people was found to be an over-evacuation due mainly to the uncertainty of hurricane path, which shifted from south-east to south-west Florida. The uncertainty of hurricane tracks made it difficult to predict the appropriate storm surge inundation zone for evacuation. Traffic data were used to analyze the evacuation traffic patterns. In south-east Florida, evacuation traffic started 4 days before the hurricane’s arrival. However, the hurricane path shifted and eventually landed in south-west Florida, which caused a high level of evacuation traffic in south-west Florida. Over-evacuation caused Evacuation Traffic Index ( ETI ) to increase to 200% above normal conditions in some sections of highways, which reduced the effectiveness of evacuation. Results from this study show that evacuation efficiency can be improved in the future by more accurate hurricane forecasting, better public awareness of real-time storm surge and wind as well as integrated storm surge and evacuation modeling for quick response to the uncertainty of hurricane forecasting. 
    more » « less
  5. Abstract

    Estimating the magnitude of tropical cyclone (TC) rainfall at different landfalling stages is an important aspect of the TC forecast that directly affects the level of response from emergency managers. In this study, a climatology of the TC rainfall magnitude as a function of the location of the TC centers within distance intervals from the coast and the percentage of the raining area over the land is presented on a global scale. A total of 1834 TCs in the period from 2000 until 2019 are analyzed using satellite information to characterize the precipitation magnitude, volumetric rain, rainfall area, and axial-symmetric properties within the proposed landfalling categories, with an emphasis on the postlandfall stages. We found that TCs experience rainfall maxima in regions adjacent to the coast when more than 50% of their rainfall area is over the water. TC rainfall is also analyzed over the entire TC extent and the portion over land. When the total extent is considered, rainfall intensity, volumetric rain, and rainfall area increase with wind speed intensity. However, once it is quantified over the land only, we found that rainfall intensity exhibits a nearly perfect inversely proportional relation with the increase in TC rainfall area. In addition, when a TC with life maximum intensity of a major hurricane makes landfall as a tropical depression or tropical storm, it usually produces the largest spatial extent and the highest volumetric rain.

    Significant Statement

    This study aims to describe the cycle of tropical cyclone (TC) precipitation magnitude through a new approach that defines the landfall categories as a function of the percentage of the TC precipitating area over the land and ocean, along with the location of the TC centers within distance intervals from the coast. Our central hypothesis is that TC rainfall should exhibit distinct features in the long-term satellite time series for each of the proposed stages. We particularly focused on the overland events due to their effects on human activities, finding that the TCs that at some point of their life cycle reached major hurricane strength and made landfall as a tropical storm or tropical depression produced the highest volumetric rain over the land surface. This research also presents key observational evidence of the relationship between the rain rate, raining area, and volumetric rain for landfalling TCs.

     
    more » « less